Optimized Experimental and Analytical Tools for Reproducible Drug-Response Studies

Caitlin Mills & Luca Gerosa Department of Systems Biology & Laboratory of Systems Pharmacology Harvard Medical School

4 Optimized Experimental and Analytical Tools 3 r Reproducible Drug-Response Studies 2

Caitlin Mills & Luca Gerosa

Department of Systems Biology

& Laboratory of Systems Pharmacology

Harvard Medical School

In-vitro drug-response studies in cancer are often based on relative cell number quantifications

Drug-response in cancer research and conventional metrics based on relative cell number

NATURE CHEMICAL BIOLOGY DOI: 10.1038/NCHEMBIO.1337

ARTICLE

Metrics other than potency reveal systematic variation in responses to cancer drugs

Mohammad Fallahi-Sichani¹, Saman Honarnejad¹, Laura M Heiser², Joe W Gray² & Peter K Sorger¹⁺ © 2013 Nature America, Inc. All rights reserved.

Irreproducible pharmacogenomics and other drug-dose response based studies

Inconsistency in large pharmacogenomic studies

Benjamin Haibe-Kains, Nehme El-Hachem, Nicolai Juul Birkbak, Andrew C. Jin, Andrew H. Beck, Hugo J. W. L. Aerts & John Quackenbush

Affiliations | Contributions | Corresponding author

Nature 504, 389–393 (19 December 2013) | doi:10.1038/nature12831

- 1. CCLE & GDC, Nature, Dec 2015
- 2. Haverty et al., Nature, May 2016
- 3. Bouhaddou et al. Nature, Dec 2016
- 4. Mpindi et al., Nature, Dec 2016
- 5. Safikhani et al., Nature, Dec 2016
- 6. Geeleher et al., Nature, Dec 2016

Irreproducible pharmacogenomics due to irreproducibile IC50 and other metrics

Drug-dose response correlation between Cancer Genome Project(CGP) and Cancer Cell Line Encyclopedia(CCLE):

Inconsistency in large pharmacogenomics studies, Haibe-Kains et al, Nature, 2013

Rethinking drug-dose response metrics

Marc Hafner

Normalized growth rate inhibition (GR) value

$$GR(c) = 2^{k(c)/k(0)} - 1$$

k(c) is the treated growth rate k(0) is the control growth rate

GR values are independent of the division rate and directly relate to the phenotype

GR metric allows for an intuitive assessment of phenotypic effects across cell lines and drugs

34 breast cancer cell lines

GR metric allows for an intuitive assessment of phenotypic effects across cell lines and drugs

Cell seeding affects division time which biases traditional sensitivity metrics

Seeding density affects the number of divisions. \rightarrow IC₅₀ and E_{max} are correlated with density.

Genetic alterations affect division time which biases traditional sensitivity metrics

Etoposide sensitivity in HME RPE-1 cells with inducible BRAF^{V600E} expression.

Thanks to Jia-Yun Chen for the cell line

Genetic alterations affect division time which biases traditional sensitivity metrics

Time-dependent GR metrics

For evaluating $GR_{50}(t)$ and $GR_{max}(t)$ and quantifying adaptive response or late drug action.

Time-dependent GR can reveals dynamic changes in drug-response effects

BRAF^{V600E} melanoma cell line A375

Decoupling cytostatic and cytotoxic drugresponses by GR metrics

Normalized growth rate:

$$\frac{k_{s}(c)}{k_{s}(0)} = \left(1 + \frac{d(c,t) - d_{0}}{x(c,t) - x_{0}}\right) \cdot \ln\left(\frac{x(c,t)}{x(0,0)}\right) / \ln\left(\frac{x(0,t)}{x(0,0)}\right)$$

Normalized death rate:

$$\frac{k_{\mathbf{T}}(c)}{k_{\mathbf{S}}(0)} = -\left(\frac{d(c,t) - d_0}{x(c,t) - x_0}\right) \cdot \ln\left(\frac{x(c,t)}{x(0,0)}\right) / \ln\left(\frac{x(0,t)}{x(0,0)}\right)$$

Decoupled GR metric:

$$GR_{S} = 2^{\frac{k_{S}(c)}{k_{S}(0)}} - 1$$
 $GR_{T} = 2^{\frac{k_{T}(c)}{k_{S}(0)}} - 1$

$$GR = GR_{S} + GR_{T} + GR_{S} \cdot GR_{T}$$

Similar drug responses can be due to different combinations of cell growth and death

GR metrics correct growth rate confounders in pharmacogenomics and reveal true associations

Re-Analysis using GR metric of Genentech Cell Line Screening Initiative (409 cell lines and 16 drugs):

Alternative drug sensitivity metrics improve preclinical cancer pharmacogenomics

Marc Hafner, Mario Niepel & Peter K Sorger

GR metrics correct growth rate confounders in pharmacogenomics and reveal true associations

False negative example: PTEN mutate ARE insensitive to Lapatinib

False positive example: ΔCDC73 are NOT sensitive Docetaxel

Alternative drug sensitivity metrics improve preclinical cancer pharmacogenomics Marc Hafner, Mario Niepel & Peter K Sorger

GR metrics improve reproducibility between pharmacogenomics studies

Comparison of drug-dose response for 9 drugs and ~100 cell lines in the Genentech Cell Line (gCSI) and Cancer Therapeutic Response Portal (CTRP) studies:

Alternative drug sensitivity metrics improve preclinical cancer pharmacogenomics Marc Hafner, Mario Niepel & Peter K Sorger

Conclusions on GR metrics as analytical tools for reproducible drug-dose responses

GR metrics...

- ... eliminate confounders that act by cell division bias (cell seeding, genetic background, etc...)
- ... can be extended to quantify time-dependent drug-response and to decouple cytostatic and cytotoxic effects
- .. improve reproducibility in studies that rely on measuring growth inhibition, such as in pharmacogenomics

To consider before you start: cell lines

- How many cell lines do I want to test?
- Are they amenable to imaging?
- Are they adherent?
- Do they grow in a monolayer?
- How densely should they be seeded?

To consider before you start: drugs

- How many drugs do I want to collect dose response data for?
- Are they DMSO soluble?
- How many dose points do I need?
- What's an appropriate dose range?
- How many time points do I want to test?
- How long should the assay run?
- What are the expected effects of drug treatment?

To consider before you start

96 or 384 well plates

Do I need to use the GR approach?

It depends on how you answered the previous questions.

Relative cell counts are valid when the untreated controls do not change:

- Phenotype is not related to cell growth
- Untreated cells do not grow
- Short assays during which growth is negligible

Experimental design

Design scripts available at github.com/datarail/datarail

	giring booth autor and autor an	
🗉 readn	Ell readme.md	
Co	omputational workflow for design of dose-response experiments	
Ins	stallation	
•	The repository can be installed from command line as shown below	
	<pre>\$ git clone https://github.com/datarail/datarail.git</pre>	
•	To install dependencies and enable importing modules from any location on your local machine, cd into the datarail folder, followed by the command below.	
	\$ pip install -e .	
Ge	atting started	
	Set up the well and plate level metadata files as shown in datarail/examples	
•	Start a Jupyter notebook or IPython session.	
•	The layout of drugs on doses across 96/384 well plates can be constructed using the code below. The pandas dataframe dfm contains the desingned layout. Refer to datarail/examples for a detailed explanation with examples.	
	<pre>import pandas as pd from datarail.experimental_design import process_assay as pa dfp = pd.read_csv('plate_level_metadata.csv') dfm = pa.randomize_wells(dfp) dfm.to_csv('dose_response_layout_metadata.csv', index=False)</pre>	

Branch: mas	datarail / datarail / examples / create_plate_layout.ipyn	b	Find file Copy path			
smkarti	k included relevant lines of code and documentation to export design to		d928a53 4 days ago			
contributo	pr					
5 lines (144 sloc) 4.53 KB	Raw Blame	History 🖵 🖋 🗑			
	The example script below demonstrates how a randon an initial description (see input_file.csv) of the experim	nized plate layout can be gene ent	rated from			
în []:	<pre>import pandas as pd from datarail.experimental_design import process_assay as pa from datarail.experimental_design import plot_plate_layout as ppl from datarail.experimental_design import hpdd_utils as hu %matplotlib tk</pre>					
	The input file (see input_file.csv) should be broad description of the following commons	e drugs and their concentrations and sh	nould contain the			
-	agent : lists the names of drugs. Combinations are to spec 'agent1, agent2'	ified as comma seperated strings. Fo	r example -			
	max_doseum : lists the highest dose for each agent.					
	role : lists the intended role for each agent 'treatment'.	or 'positive control'				
	num_replicates : lists number of times the dosing schme same plate.	of a drug (or a combination) is replica	ated on the			
	equivalent : 0 if the combination should comprise of the make up the combination	full cartesian product. 1 if only equiva	alent doses			
	The plate level file (see plate_id.csv) should provide a description of plate	ate level metadata. It should contain the fo	bllowing columns			
	parcode : list of barcodes (plate identifiers)	1 20200)				
•	timenoint: time point corresponding to each plate. Set to	time0 ctrl for plate that should	he used as			

Set up library plates for pin transfer for large scale experiments

Manual layout of drugs on source plates

Randomized Library Plates

Use controls to 'barcode' library plates.

Use other automation for pilot, follow-up and smaller experiments

Home Advanced Current Protocol		
Run Undo Copy Wells Daste Special Copy All Wells Clipboard	Set Titration Value Value Valu	
Fluids 🖶 🛛 Plates 🖶	+	
AURKAi 0.16 µL ⓒ ♦ CDK1/2 III	Plate 1 – 171108_DDD_69 Additional volume: 60 µL DMSO limit: 2	2%
Dinacidib 0.50 µL ⓒ ♦		
15.8 µL © 🍐 Nocodazole		
0.16 µL © 🍐 Ribociclib		
Normalization		_
		_
		-1
		-1
Show I		لنسر

Design steps to improve reproducibility

- Randomization of the treatments across multiple technical replicates
- Standardize nomenclature, barcode plates
- Control for plate bias (across day 0 plate; positive & negative controls across treatment plates)
- Robotic treatments with the D300 or pin transfer
- Exclude edge wells whenever possible
Randomization can mitigate edge effects

Experimental design is complete. Now what?

- Grow (happy) cells
- Seed cells at appropriate densities in multi-well plates
- Deliver drugs to multi-well plates
- Stain and fix cells
- Image cells
- Extract quantitative data from images

Cell seeding

- Seed plates at an appropriate density from parent plates in log-phase growth
- Use automation if possible
- Barcode plates to keep track of them

Cell seeding density influences growth rate...

...which influences the dose response

Drug delivery via pin transfer

- For simultaneous delivery of many drugs
- For large scale experiments (many cell lines, conditions)
- Facilitates reproducibility

Drug delivery via digital drug dispenser

- For accurate delivery of a few drugs
- Pilot experiments- to identify appropriate doses
- Follow-up experiments, 'hit' validation
- Drugs that cannot be prepared in DMSO

No automation? Use serial dilutions

and multichannel pipettes

Dye-drop assay reagents

 Minimally-disruptive, reagent-sparing cell staining and fixation protocol

Dye-drop assay protocol

- Stain: Hoechst + LDR in 10% optiprep in PBS
- Fix: 4% formaldehyde in 20% optiprep in PBS

Plate washer

 Uniform and controlled aspiration and liquid dispensing

• Is repeat washing really that bad?

Repeat washing can result in cell loss...

No wash

PBS wash x 1

PBS wash x 2

...that can bias your results

No wash 1x w

Treated at 0.1uM

1

Untreated

Image acquisition

- Operetta microscope with plate hotel, barcode reader & robot
 - Automated data collection for 40+ plates

Image acquisition

Imaging 6 fields of view @ 10x captures *almost* the entire well

Image analysis

1. Segment nuclei

2. Measure LDR signal

3. Classify live/dead cells

Well	Row	Column Cell Line	Time point	Treatment	Dose (uM)	Cell count	Dead cell count	Cell count t=0
C2	3	2MCF10A	72	Staurosporine	1	5091	1833	1954
C3	3	3MCF10A	72	Staurosporine	1	5929	2137	1954
C4	3	4MCF10A	72	Staurosporine	1	5663	2021	1954
C5 C6	3	SMCF10A	72	UMSU Staurosposina	0.216	6613	1147	1954
c7	3	7MCF10A	72	DMSD	0.710	7732	329	1954
C8	3	8MCF10A	72	Staurosporine	1	5463	2473	1954
D2	4	2MCF10A	72	DMS0	0	8746	\$8	1954
D3	4	3MCF10A	72	Staurosporine	0.316	6168	1496	1954
D4	4	4MCF10A	72	Staurosporine	0.1	7941	636	1954
05	4	SMCF10A	72	DMS0	0.110	8529	360	1954
00	4	7MCF10A	72	DMS0	0.516	8872	1157	1954
DS	4	8MCF10A	72	DMS0	0	9166	73	1954
C2	3	2MCF10A	72	Staurosporine	1	5091	1833	1954
C3	3	3MCF10A	72	Staurosporine	1	5929	2137	1954
C4	3	4MCF10A	72	Staurosporine	1	5663	2021	1954
05		SMCF10A	74	UMSU	0.216	6613	29/	1954
67	3	7MCF10A	72	DMS0	0.316	7732	329	1954
C8	3	8MCF10A	72	Staurosporine	1	5463	2473	1954
D2	4	2MCF10A	72	DMSO	0	8746	88	1954
D3	4	3MCF10A	72	Staurosporine	0.316	6163	1496	1954
04	4	4MCF10A	72	Staurosporine	0.1	7941	636	1954
05	4	5MCF10A	72	DMS0	0.216	8529	360	1954
07		7MCE10A	72	DMSO	0.510	8872	160	1954
08	4	8MCF10A	72	DMSO	0	9166	73	1954
C2	3	2MCF10A	72	Staurosporine	1	5091	1833	1954
C3	3	3MCF10A	72	Staurosporine	1	5929	2137	1954
C4	3	4MCF10A	72	Staurosporine	1	5663	2021	1954
C5	3	5MCF10A	72	DMS0	0.210	8000	297	1954
C0 C7	3	7MCF10A	72	DMS0	0.516	7732	329	1954
C8	3	8MCF10A	72	Staurosporine	1	5463	2473	1954
D2	4	2MCF10A	72	DMS0	0	8746	\$8	1954
D3	4	3MCF10A	72	Staurosporine	0.316	6168	1496	1954
D4	4	4MCF10A	72	Staurosporine	0.1	7941	636	1954
D5	4	5MCF10A	72	DMS0	0.210	8529	360	1954
00	4	7MCF10A	72	DMS0	0.516	8872	1157	1954
08	4	8MCF10A	72	DMS0	0	9166	73	1954
C2	3	2MCF10A	72	Staurosporine	1	5091	1833	1954
C3	3	3MCF10A	72	Staurosporine	1	5929	2137	1954
C4	3	4MCF10A	72	Staurosporine	1	5663	2021	1954
65	3	5MCF10A	72	DMS0	0.216	8000	297	1954
C0 C7		2MCF10A	72	DMS0	0.510	7732	379	1954
C8	3	8MCF10A	72	Staurosporine	1	5463	2473	1954
D2	4	2MCF10A	72	DMSO	0	8746	88	1954
03	4	3MCF10A	72	Staurosporine	0.316	6168	1496	1954
D4	4	4MCF10A	72	Staurosporine	0.1	7941	636	1954
06	4	5MCP10A 6MCF10A	72	Staurosocina	0.316	6194	1157	1954
07	4	7MCF10A	72	DMS0	0.510	8872	160	1954
08	4	8MCF10A	72	DMSD	0	9166	73	1954
C2	3	2MCF10A	72	Staurosporine	1	5091	1833	1954
C3	3	3MCF10A	72	Steurosporine	1	5929	2137	1954
C4	3	4MCF10A	72	Staurosporine	1	5663	2021	1954
C6		6MCF10A	74	Staurosporine	0.216	6613	29/	1954
67	3	7MCF10A	72	DMS0	0.316	7732	329	1954
C8	3	8MCF10A	72	Staurosporine	1	5463	2473	1954
D2	4	2MCF10A	72	DMS0	0	8746	88	1954
D3	4	3MCF10A	72	Staurosporine	0.316	6168	1496	1954
04	4	4MCF10A	72	Staurosporine	0.1	7941	636	1954
05	4	5MCF10A	72	UMS0	0.210	8529	360	1954
07	4	7MCF10A	72	DMS0	0.316	8872	157	1954
08	4	8MCF10A	72	DMS0	0	9166	73	1954

Can I just count live cells?

Strengths and limitations of the dye-drop assay

- Imaging based
 - Best suited for adherent cells that grow in monolayer culture
- Image analysis can be time consuming
- Can go back and visually inspect imaging data
- Potential for multiplexing, immunofluorescence
- Reagent sparing
- Distinction between cytotoxic and cytostatic effects
- Fate of live cells unknown

Other common dose response assays

- CellTiter-Glo etc.
 - Simple, no wash protocol
 - Luminescence read-out, simple analysis, rapid results
 - Treatment-induced changes in metabolic activity of cells can skew results
- Measurement of confluency
 - Inaccurate
 - Treatment-induced changes in morphology can skew results

Example of artefact with a CDK4/6 inhibitor

Take away messages

- Include a t=0 plate
- Optimize conditions, be consistent
 - Seeding density per cell line
 - Dose range per drug
 - Duration of the assay
- Automate as much as possible

Data processing

Data analysis

datarail / datarail / examples / Merge columbus output with plate and well level metadata files.ipynb

smkartik updated merging data and plotting gr metrics script.																	
1 contributor																	
577 lines (576 sloc) 16.5 KB																	
In [1]:	<pre>[1]: from datarail.experimental_design import merge_data_metadata as mdm import pandas as pd import gr50</pre>																
	Lo	ad columb	ous output, me	etadata	and pla	ate info files	s. Ens	ure that	column he	ading are	as shov	vn in	the belo	w exar	mple input file	s	
In [2]:	<pre>[2]: dfo = pd.read_table('columbus_output.tsv') dfo.head()</pre> Raw quantified image data																
Out[2]:		barcode	date		Row	Column	well	cell_co	ount_total	corpse_	count	cell	_count_	_dead	cell_count		
	0	MH1_01	2016-06-06 1	12:34:5	63	3	C03	511.0		32.0		12.0			499.0		
	1	MH1_01	2016-06-06 1	12:34:5	63	4	C04	511.0		30.0		12.0			499.0		
	2	MH1_01	2016-06-06 1	12:34:5	63	5	C05	526.0		32.0		12.0			514.0		
	3	MH1_01	2016-06-06 1	12:34:5	63	6	C06	494.0		38.0		15.0			479.0		
	4	MH1_01	2016-06-06 1	12:34:5	63	7	C07	507.0		29.0		13.0			494.0		
In [3]:	df df	m = pd.n m.head()	read_csv(' <mark>e</mark>)	xampl	.e_meta	adata.cs	√')	÷	Meta	data f	rom	des	sign				
Out[3]:		agent co	oncentration	role	well ra	Indomizati	on_s	cheme	timepoint	barcode	cell_l	ine					
	0	NaN N	aN	NaN	C03 0				time0_ctrl	MH1_01	CL_1						
	1	NaN N	aN	NaN	C04 0				time0_ctrl	MH1_01	CL_1						
	2	NaN N	aN	NaN	C05 0				time0_ctrl	MH1_01	CL_1						

datarail / datarail / examples / Merge columbus output with plate and well level metadata files.ipynb

Analysis output files

							cell_line	treatment	concentratio	GRvalue
							Hs578T	AZD1775	0.001	0.87627773
and the state				I a a sum to a tout			Hs578T	AZD1775	0.00316228	0.71315548
cell_line	treatment	concentratio ce	ell_count cel		cell_countti	meu time	Hs578T	AZD1775	0.01	0.54911891
HS5781	AZD1775	0.001	3161	3837.666667	875.2694	4805	⁷² Hs578T	AZD1775	0.03162278	0.36042471
Hs5781	AZD1775	0.001	3398	3837.666667	875.2694	4805	⁷² Hs578T	AZD1775	0.1	0.28988683
Hs5781	AZD1775	0.001	3493	3837.666667	875.269	4805	⁷² Hs578T	AZD1775	0.31622777	0.15239405
Hs578T	AZD1775	0.00316228	2768	3837.666667	875.2694	4805	72 Hs578T	AZD GR	values ^L	0.06211543
Hs578T	AZD1775	0.00316228	2742	3837.666667	875.2694	4805	72 Hs578T	AZD	valueo 5	0.01136504
Hs578T	AZD1775	^{0.003} Norn	nalized c	ount table	875.2694	4805	72 Hs578T	AZD1775	10	-0.2126464
Hs578T	AZD1775				875.2694	4805	72 Hs578T	AZD2014	0.001	0.73724513
Hs578T	AZD1775	0.01	2108	3837.666667	875.2694	4805	72 Hs578T	AZD2014	0.00316228	0.72666777
Hs578T	AZD1775	0.01	2268	3837.666667	875.2694	4805	72 Hs578T	AZD2014	0.01	0.66564344
Hs578T	AZD1775	0.03162278	1595	3837.666667	875.2694	4805	72 Hs578T	AZD2014	0.03162278	0.55891961
Hs578T	AZD1775	0.03162278	1742	3837.666667	875.2694	4805	72 Hs578T	AZD2014	0.1	0.49154648
Hs578T	AZD1775	0.03162278	1727	3837.666667	875.2694	4805	72 Hs578T	AZD2014	0.31622777	0.33929164
Hs578T	AZD1775	0.1	1527	3837.666667	875.2694	4805	72 Hs578T	AZD2014	1	0.32070364
Hs578T	AZD1775	0.1	1339	3837.666667	875.2694	4805	72 Hs578T	AZD2014	3.16227766	0.2845481
Hs578T	cell line	treatment	GR50	GRmax	GR AOC	GEC50	GRinf	h GR	r2 GR	pval GR
Hs578T	Hs578T	A7D1775	0.01893073	-0.2126464	0.69121549	0.04681442	-0.2378845	0.42983997	0.97294605	3.26E-06
Hs578T	Hs578T	A7D2014	0.06225072	0 27113099	0.51356141	0.020339	0 16159799	0 34897477	0.97356694	3.00F-06
Hs578T	L-570T	A7DE262	A 663644E1	0.2/113033	0.51550141	1172	0.10155755	0.35042016	0.01037275	0.00021620
Hs578T	115701	AZD5303	4.00204451	0.54057156	🟅 GR me	etrics	1-	0.23043010	0.91027375	0.00021030
Hs578T	Hs5781	AZD6738	5./00/1/45	0.15862042	0	3152	-0.3241112	1.87755981	0.983338	5.97E-07
Hs578T	Hs578T	BMS-265246	0.03694372	0.06418563	0.59001375	5.81104037	-0.8002119	0.18893869	0.98567468	3.52E-07
Hs578T	Hs578T	BVD523	1.70247689	0.27840528	0.29313938	5.64209574	-0.257788	0.3470251	0.96605461	7.21E-06
Hs578T	Hs578T	CFI-400945	0.00326927	0.13959787	0.71503751	0.00284445	0.1912934	3.46427746	0.97596165	2.15E-06
Hs578T	Hs578T	Flavopiridol	0.15093505	-0.1758999	0.24300872	0.19656651	-0.2662708	1.61622383	0.99714964	1.24E-09
Hs578T	Hs578T	GSK2334470	16.8060155	0.53065211	0.17491698	744.800682	-1	0.28976583	0.9734299	3.06E-06
Hs578T	Hs578T	LEE011/Ribo	3,98380188	0.39670684	0.33089144	1000	-0.7108281	0.16006672	0.92942059	9.34E-05
LLEZOT		222022/1100	0.00000200	0.00010004	0.0000244	2000	0.7 200201	0.10000072	0.02042000	5.512 0.

Online GR tool: www.grcalculator.org

GitHub - datarail/datarail: Data × B GR Metrics Calculator and Brox × C									
\leftrightarrow \Rightarrow G [i www.grcalculato	or.org/grtutorial/Home.html				☆ ^{car} 2.0			
	Home	About GR Metrics	Online GR Calculator	LINCS Dose-Response Datasets	Support	<u></u>			

Introduction

Drug-response studies play an important role in both preclinical and clinical research, but such studies are complicated by differences in cell growth rates across samples and conditions. To improve the value and reliability of such studies, new metrics for parameterizing drug response were developed and published in Nature Methods by Marc Hafner, Mario Niepel, and Peter Sorger of the Harvard Medical School (HMS) LINCS Center. These new metrics, such as GR50 and GRmax, are derived from normalized growth rate inhibition (GR) values which are based on the ratio of growth rates in the presence and absence of perturbagen. Largely independent of cell division rate and assay duration, GR metrics are more robust than IC50 and Emax for assessing cellular response to drugs, RNAi, and other perturbations in which control cells divide over the course of the assay.

Future Updates and Improvements

We plan to continue adding features and improvements to the GRbrowser, GRcalculator, and the GRmetrics R package in the coming months. We welcome comments and suggestions at gr.calculator@gmail.com. You can find a preliminary outline of our plans here. We will be adding a more detailed roadmap of additions/improvements in the near future.

Learn More about GR metrics

Upload and analyze your own data

Browse datasets analyzed using GR metrics

For offline computation, analysis, and visualization, see the Bioconductor R package GRmetrics.

🗕 🔍 🥥 GitHub - datarail/datar	ail: Data 🗙 🗋 www.grcalculator.org/g	rcalcula ×								
\leftrightarrow \rightarrow C (i) www.grcalculator.c	ww.grcalculator.org/grcalculator/									
Home	About GR Metrics	Online GR Calculator	LINCS Dose-Response Datasets	Support	92 CH 82					
GR	Getting Started									
CALCULATOR	Update: GR values may be calculated (Click "Import data file" and s	I using cell division times (and assay dur select "Cell division times" and a case to	ation) in place of initial cell counts. see more information.)							
Import data file										
Lad Example	Recent Changes: 1. Input file must contain colu 2. "Case C" input format rena Report any bugs/questions/fe	umns named "cell_line" and "treatment". amed to "Case B". eature requests to GR.calculator@gmai	l.com							

For offline computation, analysis, and visualization, see the Bioconductor R package *GRmetrics*. For a step-by-step example of using the GRcalculator, see *here*.

Formatting input files

Input files may be either comma- or tab-separated text files (.csv or .tsv). For more information about the input format, click "Import data file" and make a select For an example input file, click "Load Example" and then "Download Data File" after the file has been loaded.

Instructions

To calculate normalized growth rate inhibition (GR) values and corresponding GR metrics: GR_{50} , GEC_{50} , GR_{max} , GR_{infr} , GR_{AOC} , and h_{GR} based on cell counts in dose-response experiments using this online tool, users must provide a data file in which each row represents a separate treatment condition and the column the keys (variables) that define the treatment condition (e.g. cell line, drug or other perturbagen, perturbagen concentration, treatment time, replicate) and the recell counts (or surrogate such as CellTiter-Glo® or other readout). Analogous traditional metrics: IC_{50} , EC_{50} , E_{max} , E_{infr} , AUC, and h are also computed. Interact analysis and visualization tools are provided. Detailed instructions can be found below.

Step 1: Load the data file containing cell counts for treated and control cells.

🛡 🔍 🔍 🎧 GitHub - datarail/data	• • GitHub - datarail/datarail: Data × 🗅 www.grcalculator.org/grcalcula × 🖸										Cai	
\leftarrow \rightarrow C (i) www.grcalculator.	org/grcalculator/									☆ ^{(ar} 2.0	-	
Home	About G	GR Metrics	Online GR Calculator		LINCS D	ose-Response	Datasets	S	Support	×.		
GR	Getting Sta	rted Data Tables										
	 Input Date 	ta 🔿 GR Values 🔿 F	Fitted Parameters			Download	Data File					
CALCULATOR	Show 10 \$	entries							Search:			
Import data file	cell_line	treatment 👙	concentration 🔶	timepoint 崇		cell_count \\$	cell_cou	ıntctrl ≑	cell_cou	int_time0 🍦	plate	÷
	HCC38	AZD6738	1	72	203	1.0000000008	2629.083	33333337	750.71	4285714287	BCA2_/	A
Load Example	HCC38	Rucaparib	0.0316227766017	72	231	8.0000000007	2629.083	33333337	750.71	4285714287	BCA2_/	A
	HCC38	CFI-400945	0.001	72	259	3.00000000004	2629.083	33333337	750.71	4285714287	BCA2_/	A
	HCC38	SHP099	1	72	211	5.0000000003	2629.083	33333337	750.71	4285714287	BCA2_/	A
Advanced options	HCC38	THZ-P1-2	3.16227766017	72	244	7.0000000005	2629.083	33333337	750.71	4285714287	BCA2_/	A
Select grouping	HCC38	AZD5363	0.00316227766017	72	256	0.0000000003	2629.083	33333337	750.71	4285714287	BCA2_/	A
variables	HCC38	GSK2334470	0.316227766017	72	215	4.00000000001	2629.083	33333337	750.71	4285714287	BCA2_/	A
timepoint plate	HCC38	BSJ-03-124	0.0316227766017	72		1493	2629.083	33333337	750.71	4285714287	BCA2_/	A
	HCC38	E17	0.001	72	276	5.99999999988	2629.083	33333337	750.71	4285714287	BCA2_/	A
Analyze	HCC38	BSJ-03-124	0.00316227766017	72	174	8.999999999993	2629.083	33333337	750.71	4285714287	BCA2_/	A
	Showing 21 to	30 of 5,292 entries					Previous	1 2	3 4 5	55	30 N€	ext

Profiling the responses of triple negative breast cancer models to kinase inhibitors

- Why study kinase inhibitors in TNBC?
 - Unmet clinical need
 - Patients have a poor prognosis, and no targeted therapy options
- GR metrics were used to enable comparisons across cell lines

Selection of cell lines and drug treatments

20 TNBC

6 HR+

4 Her2amp

2 NM

4 from PDX

	Recentor	Molecular
Coll Line	Statue	Subtype
BT-20		Basal A
HCC11/13	TNBC	Basal A
HCC1806	TNBC	Basal A
HCC1937	TNBC	Basal A
НСС70	TNBC	Basal A
MDA-MB-468	TNBC	Basal A
BT-549	TNBC	Basal B
CAL-51	TNBC	Basal B
HCC1395	TNBC	Basal B
HCC38	TNBC	Basal B
Hs 578T	TNBC	Basal B
MDA-MB-157	TNBC	Basal B
MDA-MB-231	TNBC	Basal B
MDA-MB-436	TNBC	Basal B
SUM1315	TNBC	Basal B
SUM149	TNBC	Basal B
SUM159	TNBC	Basal B
CAL-85-1	TNBC	Basal
CAL-120	TNBC	Luminal
MDA-MB-453	TNBC	Luminal
CAMA-1	HR+	Luminal
HCC1428	HR+	Luminal
HCC1500	HR+	Luminal
MCF7	HR+	Luminal
MDA-MB-134	HR+	Luminal
T47D	HR+	Luminal
HCC1954	HER2amp	Basal A
HCC1419	HER2amp	Luminal
MDA-MB-361	HER2amp	Luminal
SK-BR-3	HER2amp	Luminal
hTERT-hME1	NM	Basal
MCF 10A	NM	Basal
PDX-DFCI-1206	TNBC	N/A
PDX-DFCI-1258	TNBC	N/A
PDX-DFCI-1328	INBC	N/A
PDX-HCI-002	TNBC	N/A

	Primary	Clinical	
Drug Name	Target	Status	
Alpelisib/BYL719	PI3Ka	Phase 3	
TGX221	PI3Kb	Preclinical	
Taselisib/GDC0032	PI3Ka, g, d	Phase 1/2	
Pictilisib/GDC0941	pan PI3K	Phase 2	
Buparlisib/NVP-BKM120	pan PI3K	Phase 2	
INK128/MLN0128	mTORC1/2	Phase 2	
Torin2	mTOR/ATM/ATR	Tool	
Everolimus	mTOR1	Approved	
Ipatasertib/GDC0068	AKT	Phase 1/2	
PF-4708671	p70S6K	Phase 1	I 24 k
Neratinib/HKI272	EGFR/HER2	Phase 3	
Tivantinib/ARQ197	MET	Phase 3	l inhil
Cabozantinib	VEGFR2/MET	Approved	P
Cediranib/AZD2171	VEGFR/cKIT	Phase 3	
Ceritinib/LDK378	ALK	Phase 2/3	
Saracatinib/AZD0530	SRC	Phase 2/3	
Dasatinib	BCR/ABL	Approved	
Trametinib/GSK1120212	MEK	Phase 2	
Luminespib/NVP-AUY922	HSP90	Phase 2	1
Palbociclib/PD0332991	CDK4/6	Phase 3	
Dinaciclib/SCH727965	pan CDK	Phase 1	
Abemaciclib/LY2835219	CDK4/6	Phase 3	
Volasertib/BI6727	PLK	Phase 2/3	
AZD7762	CHK1/2	Phase 1	J
Olaparib/AZD2281	PARP	Phase 3	1 <i>4</i> mis
ABT-737	Bcl2/XL	Tool	
A-1210477	Mcl-1	Tool	Finhih
Vorinostat	HDAC	Phase 2	
Paclitaxel	Chemotherapy	Approved	1
Doxorubicin	Chemotherapy	Approved	- 3 che
Cisplatin	Chemotherapy	Approved	
Etoposide	Topoisomerase II	Approved	
Topotecan	Topoisomerase I	Approved	
Bleomycin	Radiomimetic	Approved	[dam
Ionizing radiation	DNA damage	Approved	J ualli

inase bitors

SC oitors emo AL age
Data collection workflow

Dose response results for one cell line

Dose response results for all cell lines

Volasertib (PLK)

16.3 0.01 0.1

Topotecan (Topo I)

10

Dinaciclib (pan CDK)

Etoposide (Topo II)

0.75

Diversity in response profiles...

results from cytostatic and cytotoxic effects and...

...occurs in both potency and efficacy across cell lines and drugs

We aim to understand the biology underlying these differences with the goal of being able to predict the response of a cell line to a perturbation.

Can we learn more about the live cells? Deep dye-drop assay development

Image acquisition is more time consuming

Effects of drug treatment on cell cycle

Strengths and limitations

- Deeper phenotype
- Characterization of surviving cells, cell cycle effects
- Flexibility in antibody selection
- Increased cost
- Longer image acquisition time
- Work with object level data required

Conclusions

- Planning, and optimization promote reproducibility
- Automate as much as possible, know how it works
- Script the experimental design and analysis
- Use appropriate metrics for your experiment

Acknowledgements

Sorger Lab/LSP:

- Marc Hafner
- Mirra Chung
- Jeremy Muhlich
- Mario Niepel
- Kartik Subramanian
- Nick Clarke
- Liz Williams
- Peter Sorger

Funding:

NIH LINCS grant
U54-HL127365

ICCB-L:

- Stuart Rudnicki
- Caroline Shamu
- Richard Siu
- Jen Smith
- Rachel Warden

Contact us with questions

- luca_gerosa@hms.harvard.edu
- <u>caitlin_mills@hms.harvard.edu</u>
- <u>kartik_subramanian@hms.harvard.edu</u>

- grcalculator.org
- github.com/datarail/datarail

Useful references

- Hafner*, Niepel* et al. Nat Methods, 2016, 13(6):521-7
- Hafner, et al., Nat Biotech, 2017, 35(6):500-2

- Hafner*, Niepel*, Subramanian* et al., Curr Protoc Chem Biol, 2018, 9(2):96-116
- Niepel*, Hafner* et al., Curr Protoc Chem Biol, 2018, 9(2):55-74

Homework assignments

1. Drug Response Problem Set 1 – data processing and quality control; complete a typical workflow for processing and analyzing HT drug response data

2. Drug Response Problem Set 2 – data reproducibility; compare the results obtained by different labs that screened the same set of compounds in the same cell line

3. Drug Response Problem Set 3 – variability in drug response; evaluate the distribution of the calculated drug-sensitivity metrics when ~70 cell lines are treated with ~100 small molecules

4. HTS Group 1 – visualization and comparison of two cell-based small molecule screens that are looking for compounds that are selectively positive in one of the two cell lines tested

5. HTS Group 2 – visualization and comparison of two molecule screens, one is biochemical and looking for compounds that disrupt protein-protein binding and the other is trying to identify compounds that are selectively positive in one of the two cell lines tested

Assay Automation and Quantitation 2018