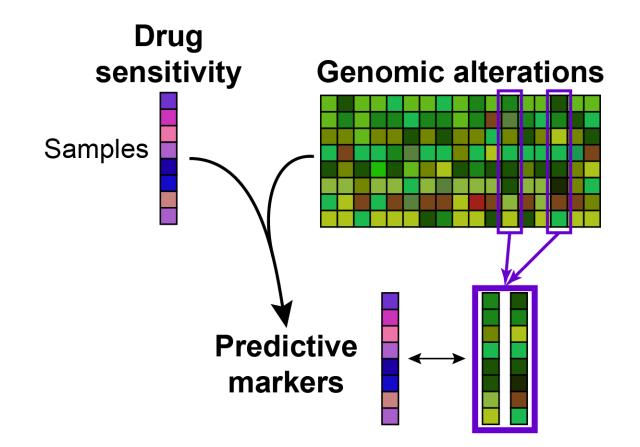
Optimized Experimental and Analytical Tools for Reproducible Drug-Response Studies

Caitlin Mills & Marc Hafner

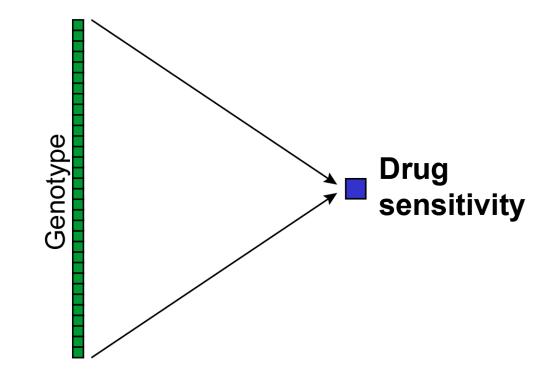
Department of Systems Biology & Laboratory of Systems Pharmacology Harvard Medical School

Nanocourse CB 399

Current approaches focus on mapping drug sensitivity to genotype using screening data



Current approaches assume that genotype and drug sensitivity are directly connected



Current approaches require reproducible drug sensitivity studies

Inconsistency in large pharmacogenomic studies

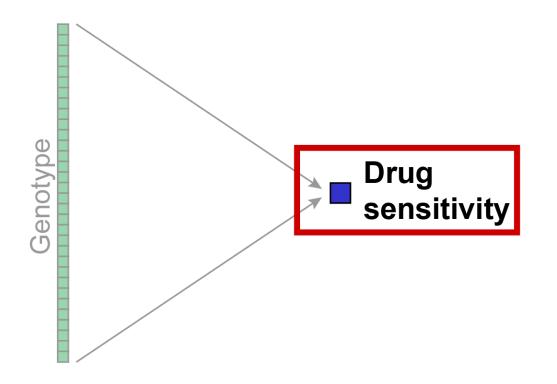
Benjamin Haibe-Kains, Nehme El-Hachem, Nicolai Juul Birkbak, Andrew C. Jin, Andrew H. Beck, Hugo J. W. L. Aerts & John Quackenbush

Affiliations | Contributions | Corresponding author

Nature 504, 389–393 (19 December 2013) | doi:10.1038/nature12831

- 1. CCLE & GDC, Nature, Dec 2015
- 2. Haverty et al., Nature, May 2016
- 3. Bouhaddou et al. Nature, Dec 2016
- 4. Mpindi et al., Nature, Dec 2016
- 5. Safikhani et al., Nature, Dec 2016
- 6. Geeleher et al., Nature, Dec 2016

Advancing precision medicine requires improved quantification of drug sensitivity

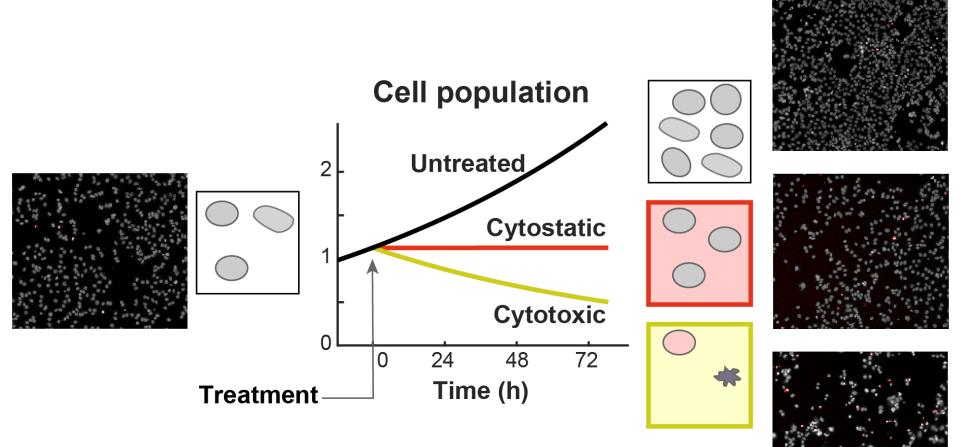


Which metrics best capture the response phenotype?

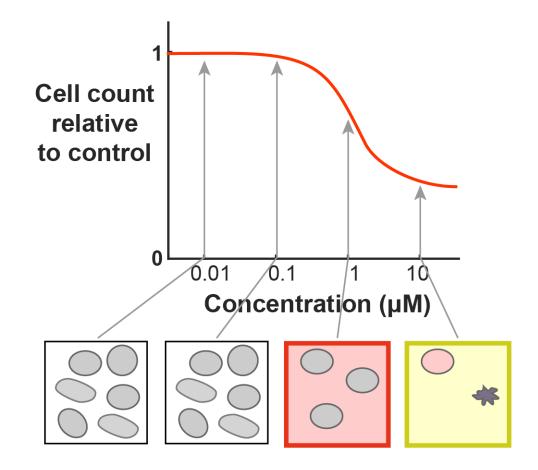
1. Theory of drug response

- Normalization
- Importance of adapted metrics
- 2. Experimental setup
- 3. Designing and analyzing experiments
- 4. Biological examples

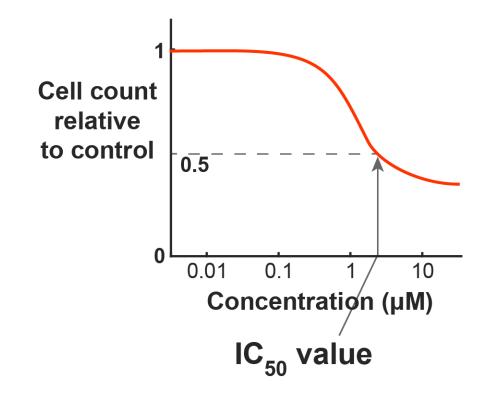
Measuring drug response is essential in pharmacology



Drug response is assayed at multiple doses

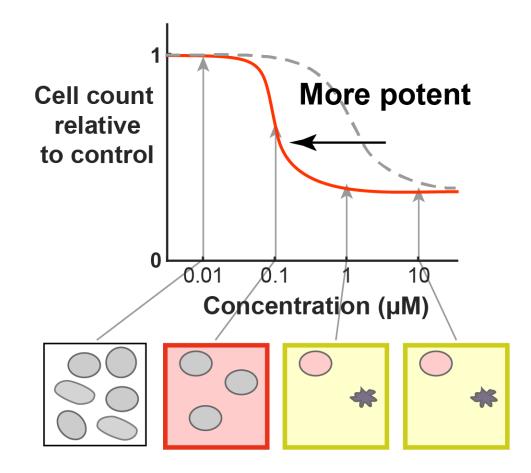


Drug response is assayed at multiple doses



 IC_{50} value is the concentration at which the relative cell count is 0.5.

Dose response curves vary across cell lines

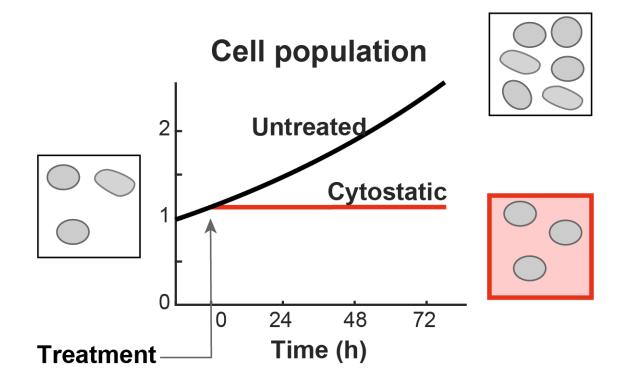


Normalization by the untreated control

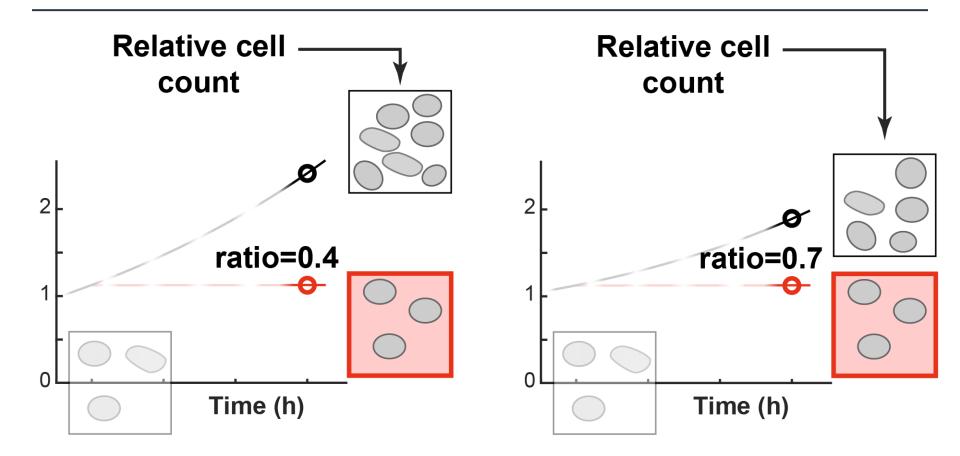
Relative cell count is valid when the untreated control remains the same:

- Phenotype is not related to cell growth
- Untreated cells do not grow
- Short assays during which growth is negligible

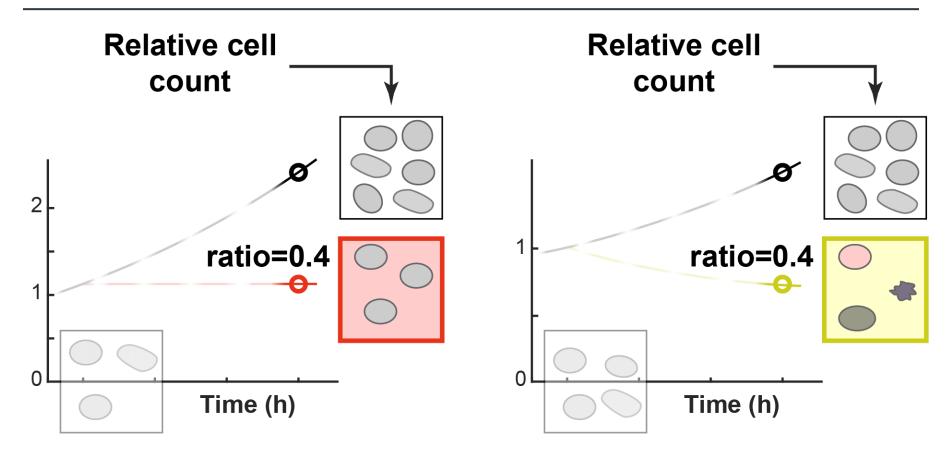
Assays that have a growing population



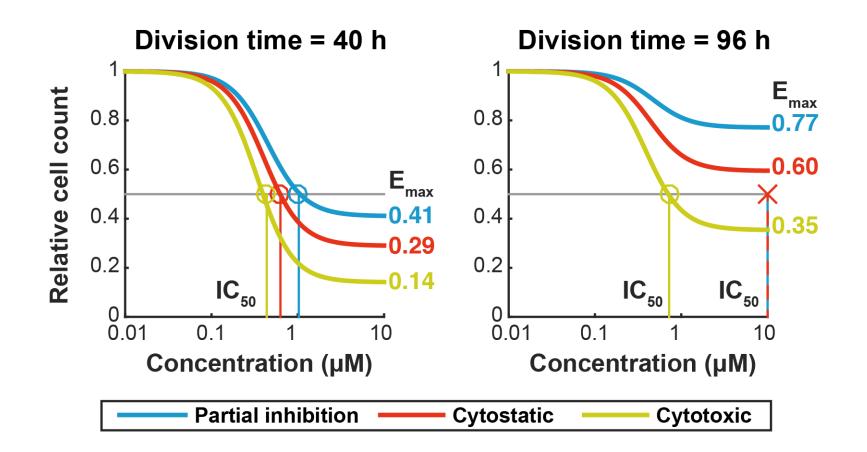
Relative cell count is biased by division rate



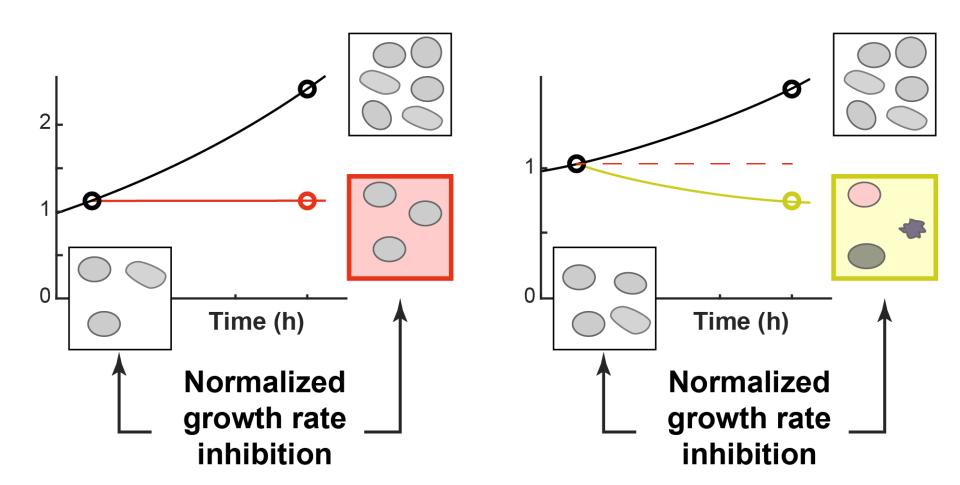
Relative cell count does not distinguish underlying phenotypes



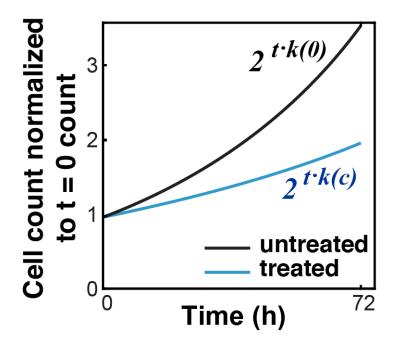
Slow growing cell lines look systematically more resistant when using relative cell count



New unbiased metrics that define these underlying phenotypes are needed



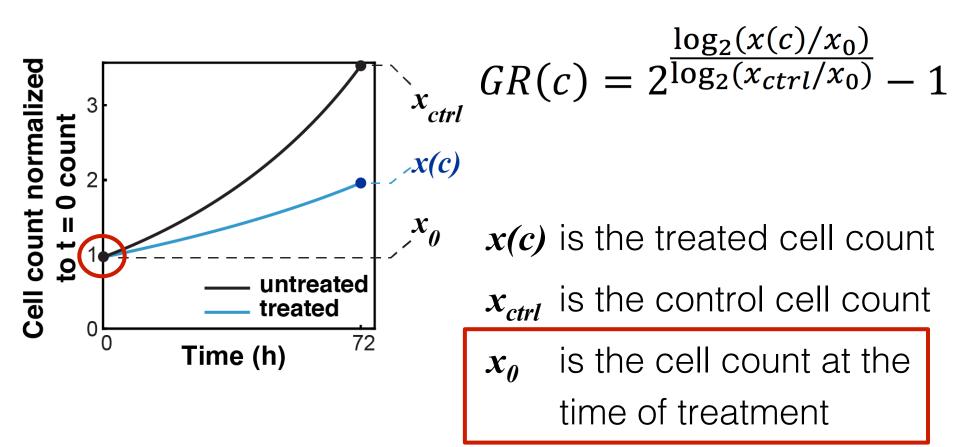
Normalized growth rate inhibition (GR) value



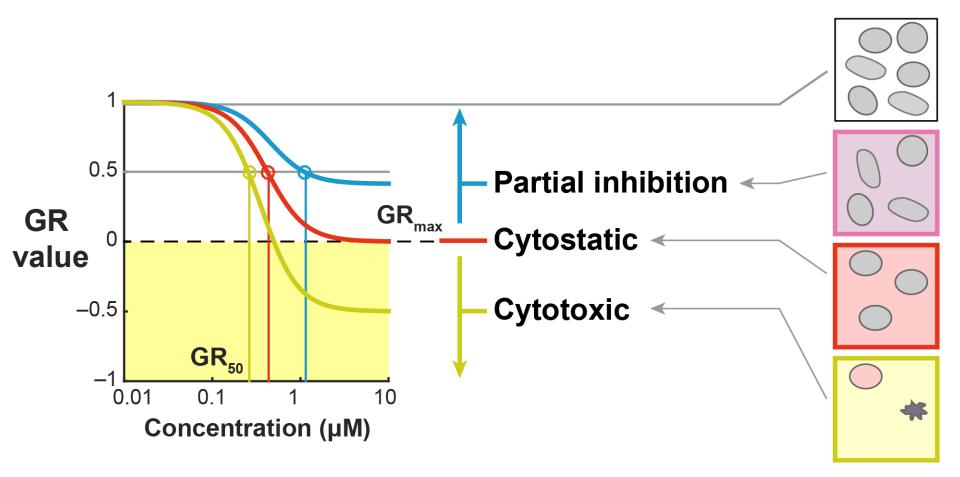
$$GR(c) = 2^{k(c)/k(0)} - 1$$

k(c) is the treated growth rate*k(0)* is the control growth rate

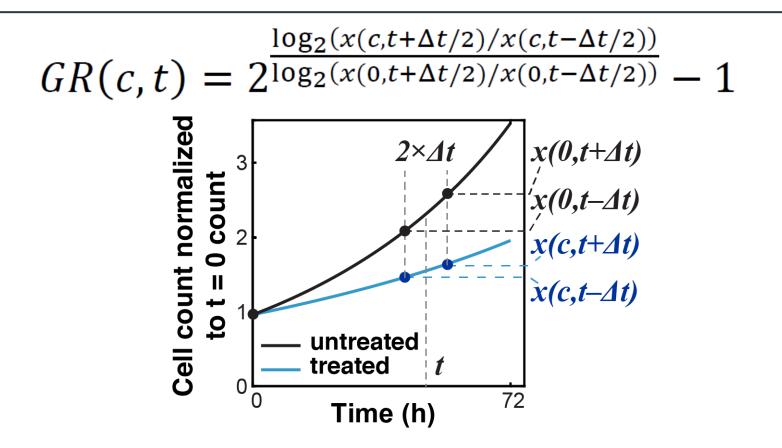
GR values rely on three measures of cell count



GR values are independent of the division rate and directly relate to the phenotype

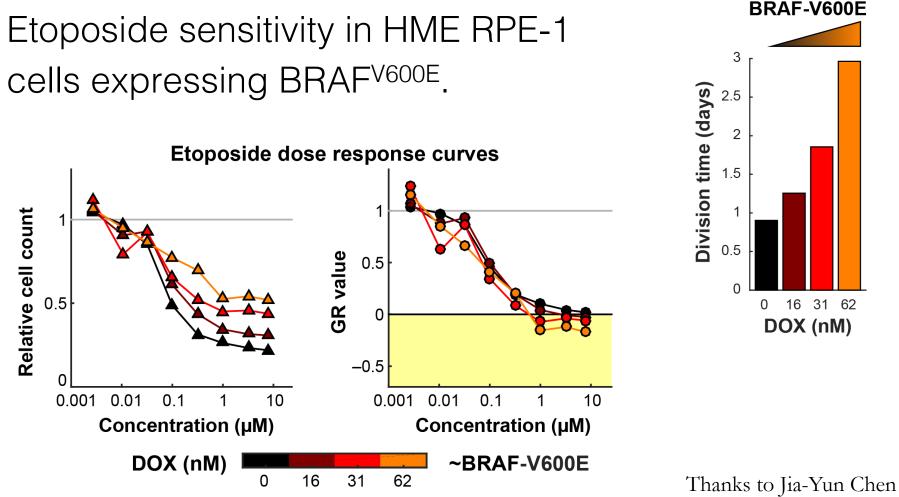


Time-dependent GR values and metrics



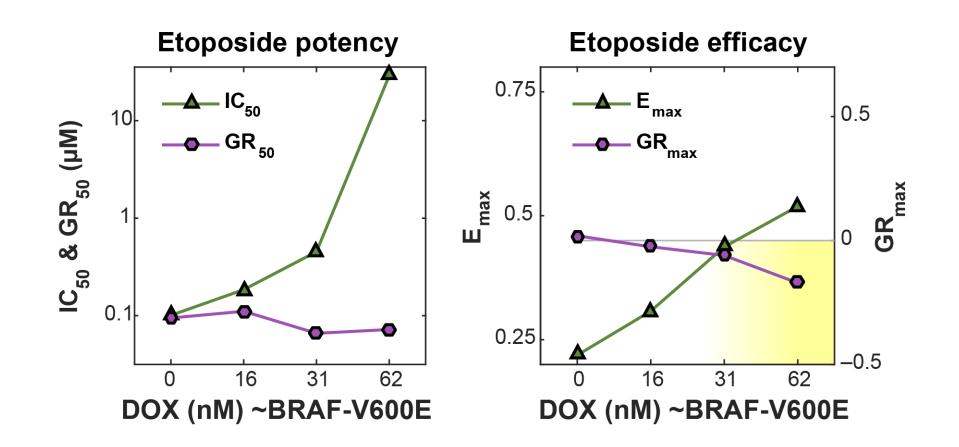
It allows evaluating $GR_{50}(t)$ and $GR_{max}(t)$ and quantifying adaptive response or late drug action.

Genetic alterations affect division time independently of drug sensitivity

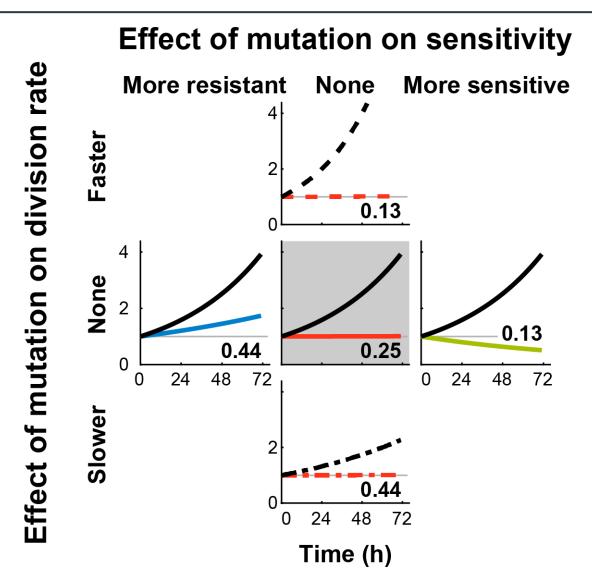


for the cell line

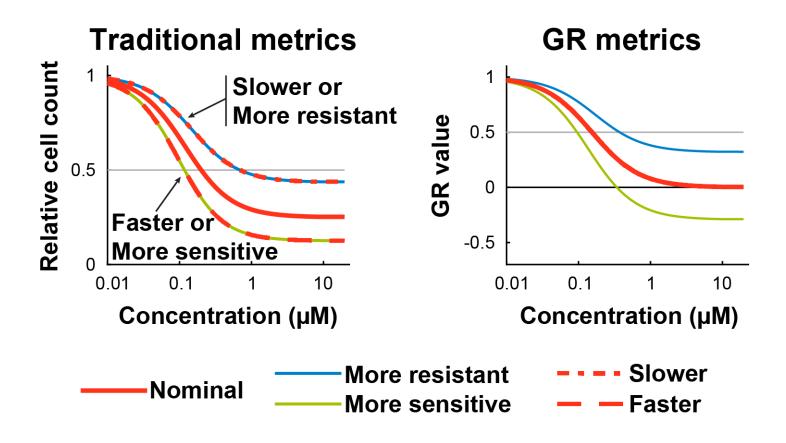
Genetic alterations affect division time which biases traditional sensitivity metrics



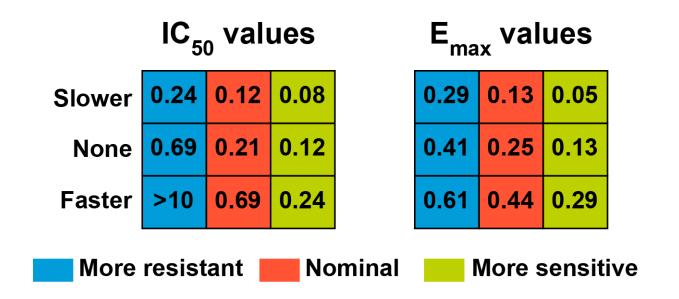
Model of interaction between mutation, division time and drug sensitivity



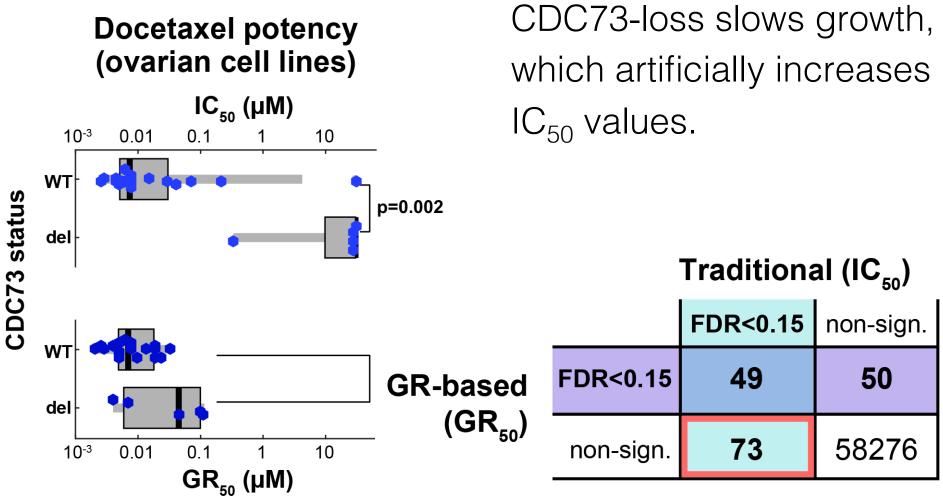
Division rate and sensitivity are confounded in traditional metrics of drug response



The bias of traditional metrics impacts pharmacogenomic studies



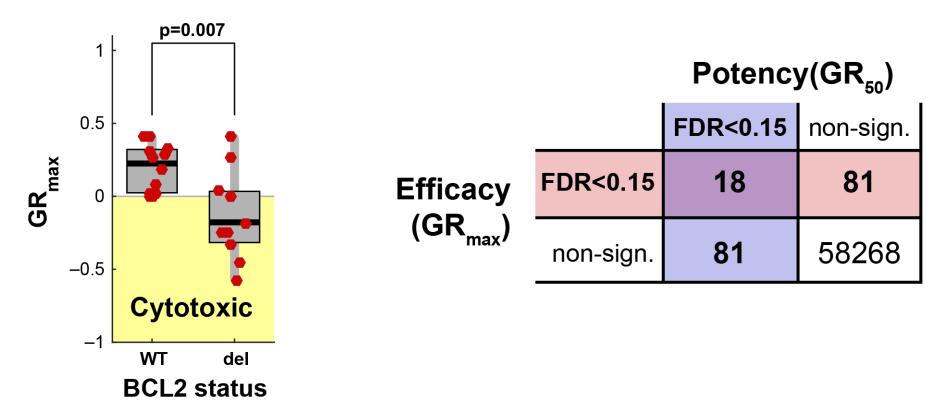
False-positive associations between IC₅₀ and genotype are common



Data from Haverty et al., Nature 2016, 533, 333-7

Efficacy (GR_{max}) correlates with genotype

Docetaxel efficacy (ovarian cell lines)



- 1. Theory of drug response
- 2. Experimental setup
 - Growth conditions and drug treatment
 - Data acquisition and quantitation
 - Strengths and limitations
- 3. Designing and analyzing experiments
- 4. Biological examples

Basic experimental workflow

- Grow (happy) cells
- Seed cells at appropriate densities in multi-well plates
- Deliver drugs to multi-well plates
- Stain and fix cells
- Image cells
- Extract quantitative data from images



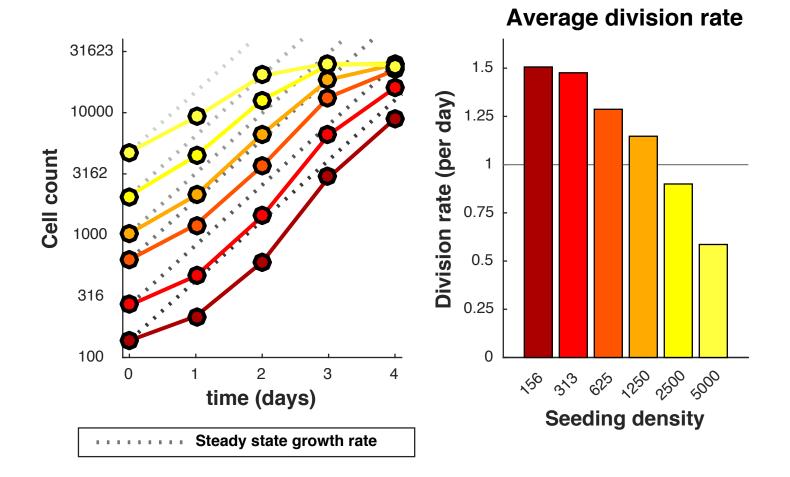
To consider *before* you start

- How many cell lines do I want to test?
 - Are they amenable to imaging?
 - Are they adherent? Do they grow in a monolayer?
 - How densely should they be seeded?
- How many drugs do I want to collect dose response data for?
 - Are they DMSO soluble?
 - What's an appropriate dose range?

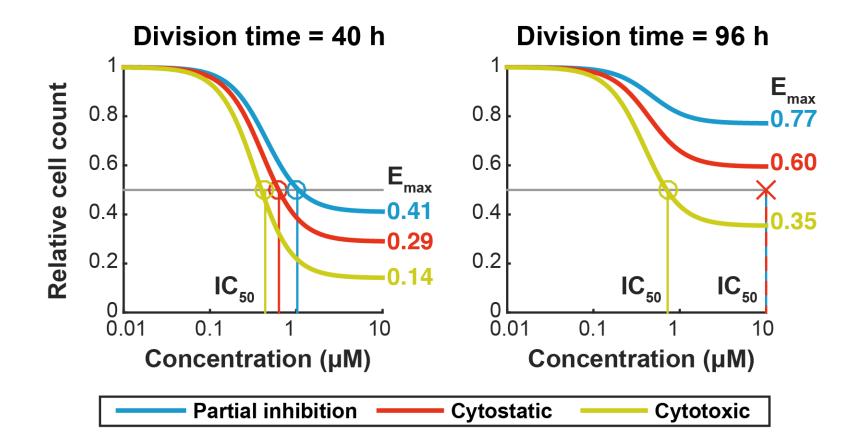
Cell seeding

- Seed plates at an appropriate density
- Use automation if possible
- Add barcodes to plates

Cell seeding density influences growth rate...



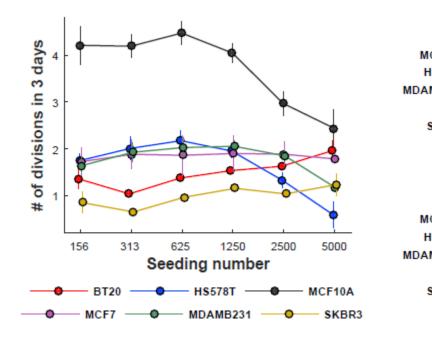
...which influences the dose response

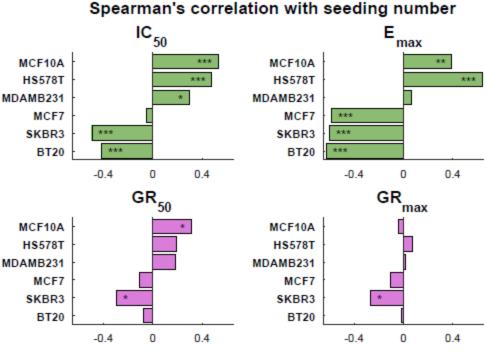


Division rate differs across densities

Seeding density affects the number of divisions.

 \rightarrow IC₅₀ and E_{max} are correlated with density.





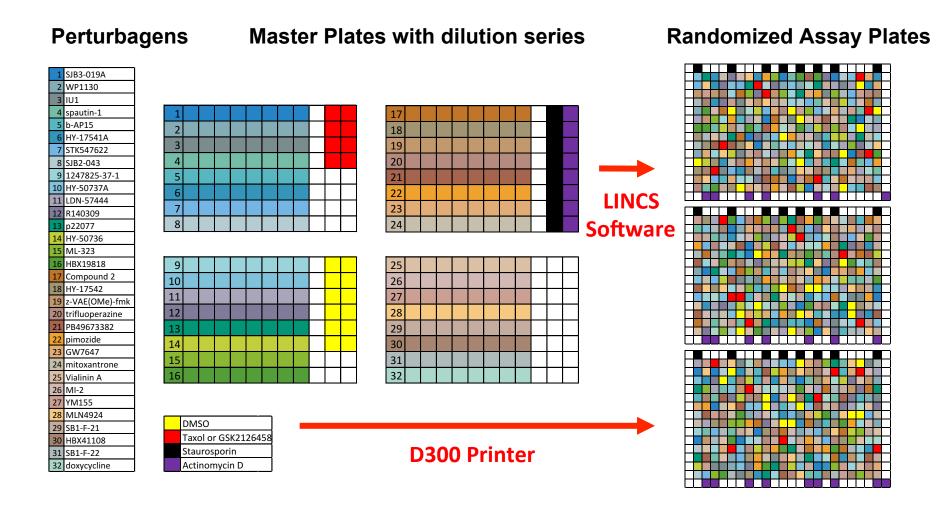
Drug delivery via pin transfer

- For simultaneous delivery of many drugs
- For large scale experiments (many cell lines, conditions)
- Facilitates reproducibility

Drug delivery via digital drug dispenser

- For accurate delivery of a few drugs
- Pilot experiments- to identify appropriate doses
- Follow-up experiments
- Drugs that cannot be prepared in DMSO

Treatment randomization



Laura Doherty

Other considerations

- Artefacts
 - Edge effects
 - Exclude outer wells
 - Use humidified secondary containers
 - Some cell lines are more sensitive than others
 - Depends on the duration of the experiment
 - Systematic bias from automation
- Randomization helps!

Dye-drop assay reagents

• Minimally-disruptive, reagent-sparing cell staining and fixation protocol

Dye-drop assay protocol

- Stain: Hoechst + LDR in 10% optiprep in PBS
- Fix: 4% formaldehyde in 20% optiprep in PBS

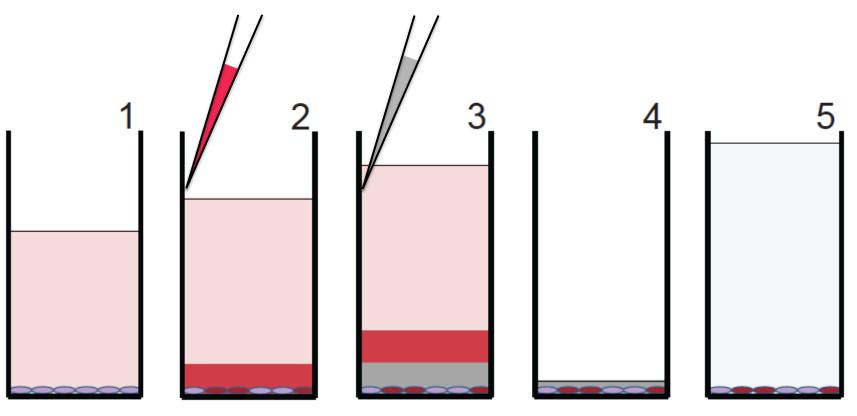


Plate washer

 Uniform and controlled aspiration and liquid dispensing

• Is repeat washing really that bad?

Repeat washing can result in cell loss...

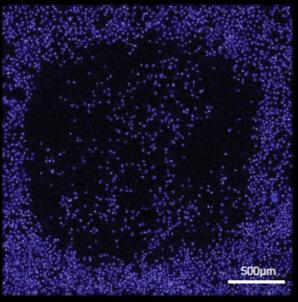
No wash

<u>Sour</u>.

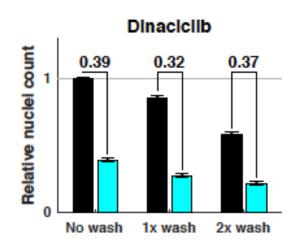
PBS wash x 1

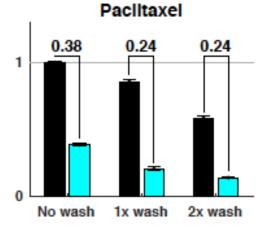
<u>.500µn</u>

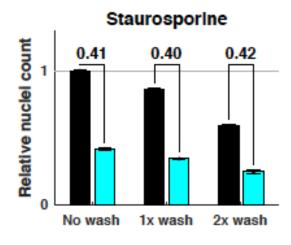
PBS wash x 2



...that can bias your results







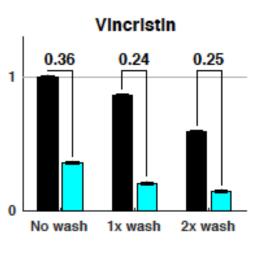
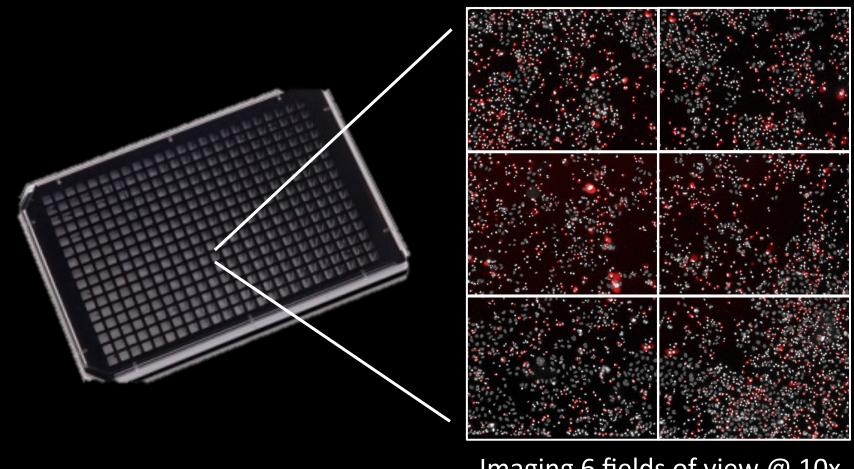


Image acquisition

- Operetta microscope with plate hotel, barcode reader & robot
 - Automated data collection for 40+ plates

Image acquisition



Imaging 6 fields of view @ 10x captures *almost* the entire well

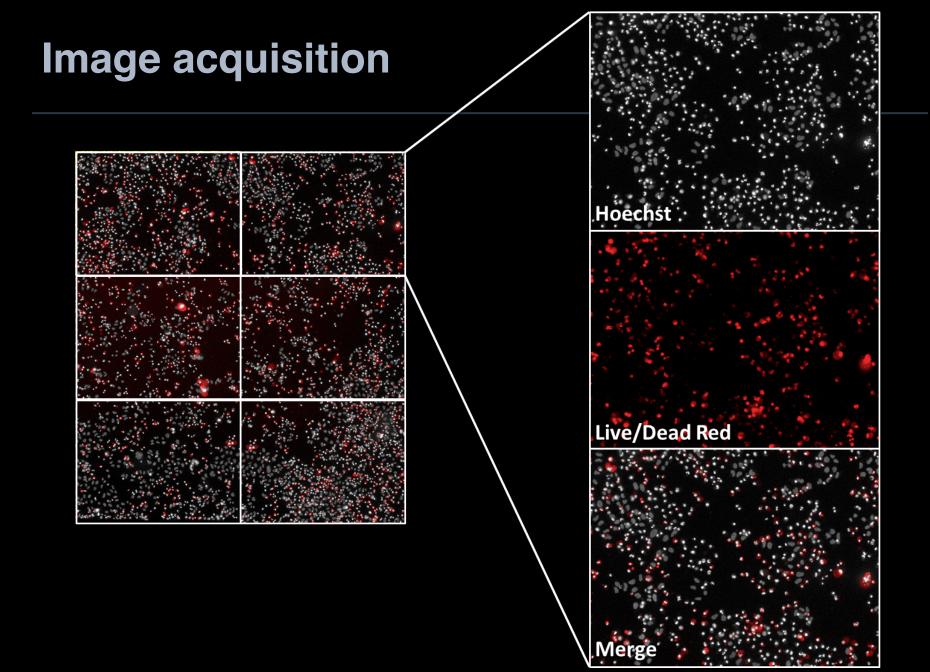
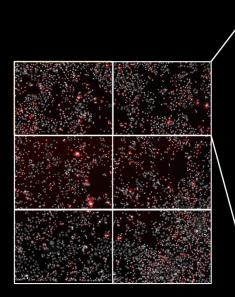
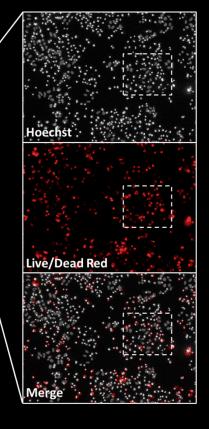
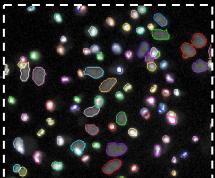


Image analysis

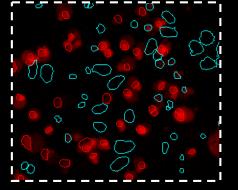




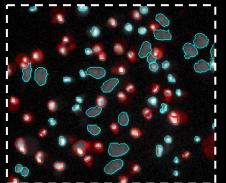
1. Segment nuclei



2. Measure LDR signal

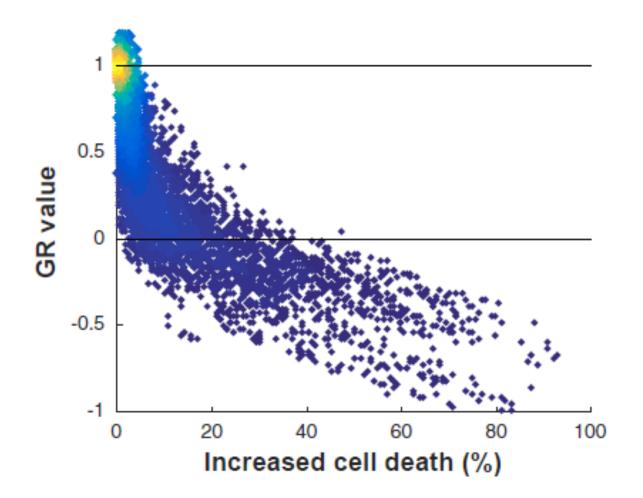


3. Classify live/dead cells



	Row	Column		Time point				Dead cell count	
C2		3	2MCF10A		Staurosporine	1		183	
C3 C4		3	3MCF10A 4MCF10A		Staurosporine	1		213	
C4 C5		3	4MCF10A 5MCF10A		Staurosporine DMS0	1		202	
C6		3	6MCF10A			0.316		114	
		3	7MCF10A		Staurosporine	0.516		114	
C7 C8					DMS0			247	
02		3	8MCF10A 2MCF10A		Staurosporine	1		247:	
D2 D3		4	3MCF10A 3MCF10A		DMSO	0.316		1494	
D4		4			Staurosporine				
05		4	4MCF10A		Staurosporine DMSO	0.1	7941	630	
D5		4	5MCF10A 6MCF10A		Staurosporine	0.316		350	
D6 D7		4	7MCF10A		DMS0	0.316		115	
D8		4	8MCF10A		DMS0	0		73	
08 C2		3	2MCF10A		Staurosporine	1		183	
C3		3	3MCF10A		Staurosporine			2130	
C4		3	4MCF10A		Staurosporine	1		202	
C5		3	5MCF10A		DMS0	-		202	
C6		3	6MCF10A		Staurosporine	0.316		114	
C7		3	7MCF10A		DMS0	0.510		329	
C8		3	8MCF10A		Staurosporine	1		2473	
D2		4	2MCF10A		DMS0			24/3	
D3		à	3MCF10A		Staurosporine	0.316		1490	
0.5		2	4MCF10A	72	Staurosporine	0.1	7941	636	
D5		2	SMCE10A	72	DMSO	0.0	8529	36	
D6		à	6MCF10A		Staurosporine	0.316		1153	
07		à	7MCF10A		DMSO	0.000	8872	160	
08		à	8MCF10A		DMSO	0		7	
C2		3	2MCF10A		Staurosporine	1	5091	1833	
C3		3	3MCE10A		Staurosporine	1	5929	2137	
C4		3	4MCF10A		Staurosporine	1	5663	202	
C5		3	5MCF10A		DMSO			297	
C6		3	6MCF10A		Staurosporine	0.316		1143	
C7		3	7MCF10A		DMSO	0.000		321	
C8		3	8MCF10A		Staurosporine	1		2473	
D2		4	2MCF10A		DMSO	-	8746	81	
D3		à	3MCF10A		Staurosporine	0.316	6168	1490	
D4		à	4MCF10A		Staurosporine	0.1	7941	636	195
D5		4	5MCF10A	72	DMSD	0		360	
D6		4	6MCF10A	72	Staurosporine	0.316	6994	115	1954
D7		4	7MCF10A	72	DMSO	0	8872	160	1954
08		4	8MCF10A		DMS0	0		73	
C2		3	2MCF10A		Staurosporine	1		1833	
C3		3	3MCF10A		Staurosporine	1	5929	213	
C4		3	4MCF10A		Staurosporine	1	5663	202:	
C5		3	5MCF10A		DMS0	0		297	
C6		3	6MCF10A		Staurosporine	0.316		1143	
C7		3	7 MCF10A		DMSO	0		325	
C8		3	8MCF10A		Staurosporine	1	5463	2473	
D2		4	2MCF10A		DMS0	0		81	
03		4	3MCF10A		Staurosporine	0.316		1496	
D4		4	4MCF10A		Staurosporine	0.1	7941	634	
05		4	5MCF10A		DMS0	0		360	
D6		4	6MCF10A		Staurosporine	0.316		1153	
07		4	7MCF10A		DMS0	0		160	
08		4	8MCF10A		DMS0	0		73	
C2		3	2MCF10A		Staurosporine	1		183	
C3		3	3MCF10A	72	Staurosporine	1		213	
C4		3	4MCF10A		Staurosporine	1		2021	
C5		3	5MCF10A		DMS0	0		297	
C6		3	6MCF10A		Staurosporine	0.316		1142	
C7		3	7MCF10A		DMSO	0		325	
C8		3	8MCF10A		Staurosporine	1	5463	2473	
02		4	2 MCF10A		DMSO	0		81	
D3		4	3MCF10A		Staurosporine	0.316		1494	
04		4	4MCF10A	72	Staurosporine	0.1	7941	636	5 195
D5		4	5MCF10A		DMS0	0		360	
D6		4	6MCF10A		Staurosporine	0.316		1157	
07		4	7MCF10A		DMS0	0		160	
28		à	8MCF10A		DMS0	0			

Can I just count cells?

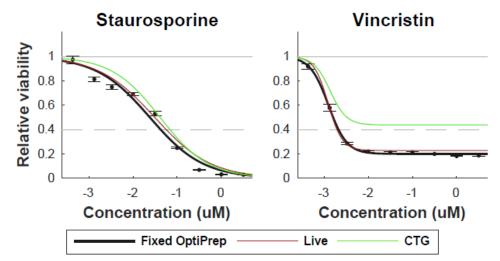


Strengths and limitations

- Imaging based
 - Best suited for adherent cells that grow in monolayer culture
- Image analysis can be time consuming
- Can go back and visually inspect imaging data
- Potential for multiplexing, immunofluorescence
- Fate of live cells unknown
- Reagent sparing
- Distinction between cytotoxic and cytostatic effects

Other assays

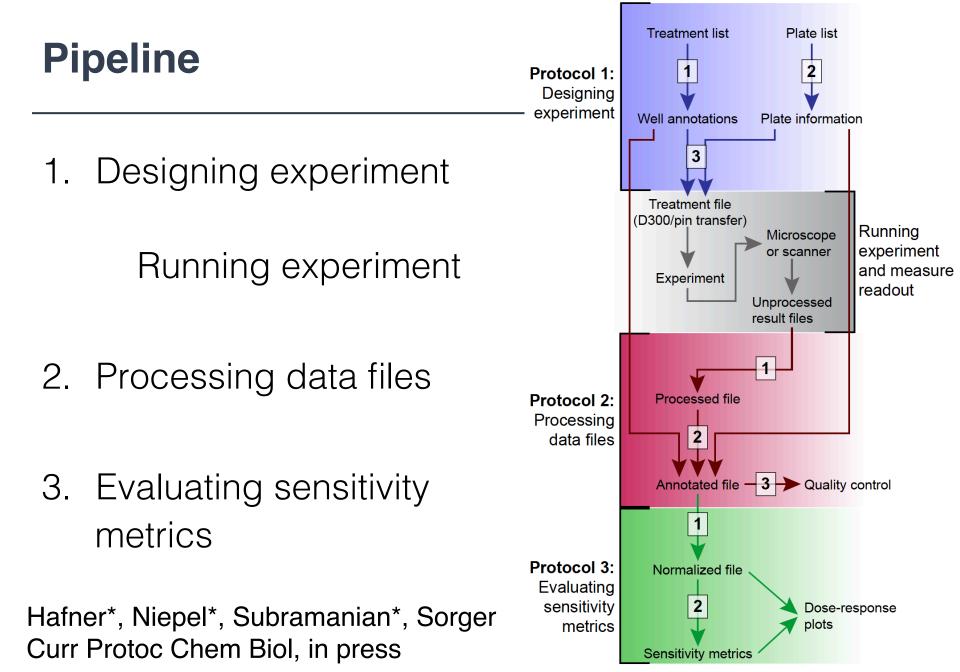
- CellTiter-Glo etc.
 - Simple, no wash protocol
 - Luminescence read-out, simple analysis, rapid results
 - Treatment-induced changes in metabolic activity of cells can skew results
- Measurement of confluency
 - Inaccurate
 - Treatment-induced changes in morphology can skew results



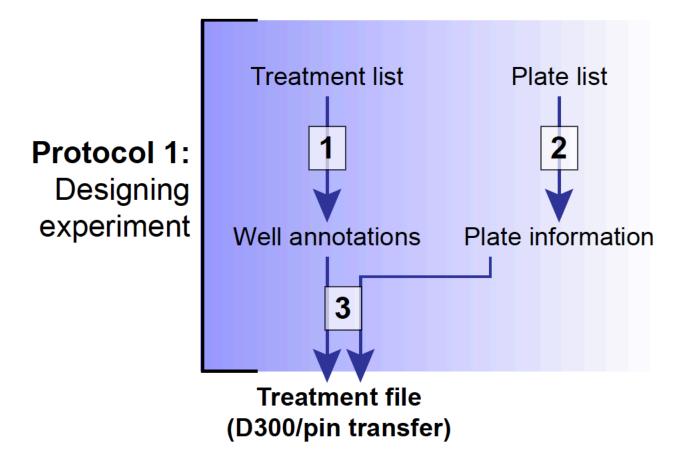
Take away messages

- Include a t=0 plate
- Optimize conditions
 - Seeding density per cell line
 - Dose range per drug
 - Duration of assay
- Automate as much as possible

- 1. Theory of drug response
- 2. Experimental setup
- 3. Experimental design and analysis
 - Scripting the design
 - Processing and analyzing data
- 4. Biological examples



Design

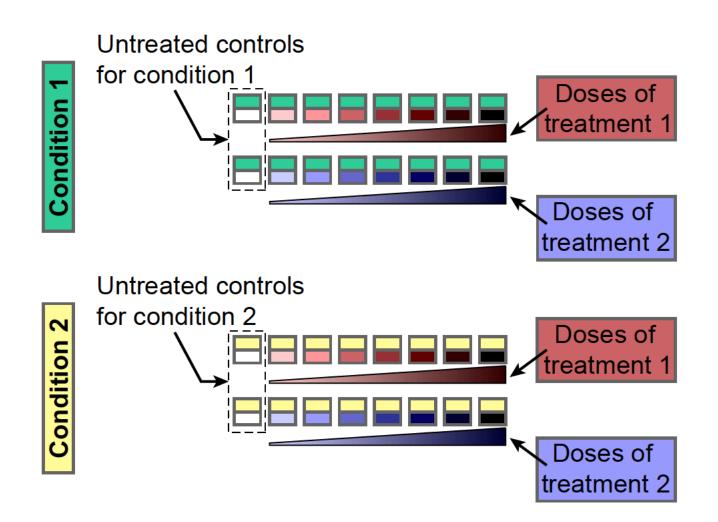


Additional notes: types of variables

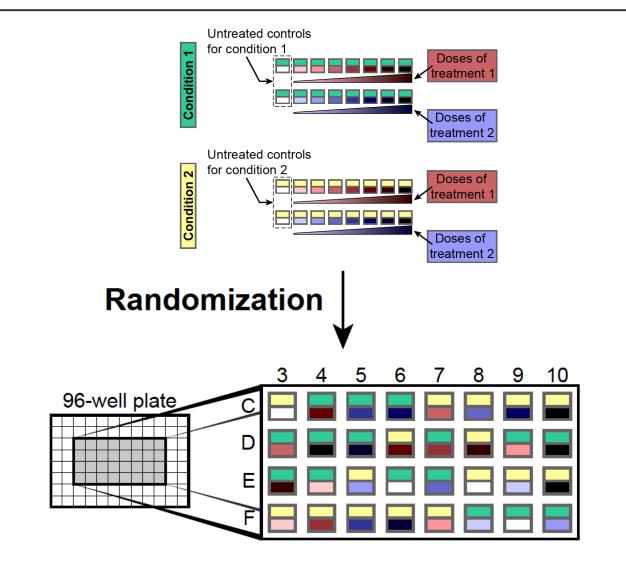
- Model variables:
 - Treatment variables (drug, concentration, ...)
 - Condition variables (growth media, seeding density, ...)

- Confounder variables:
 - Plate model
 - Assay date
- Readout variables

Design example: testing 2 drugs across multiple doses in 2 conditions



Randomizing the position on the plate avoids biases and artefacts



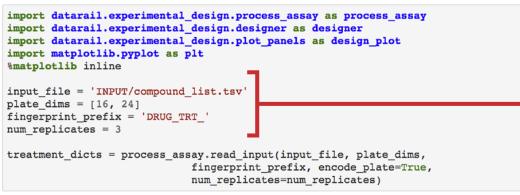
Use Python and Jupyter notebooks to produce the experimental design

Template for specifiying the experimental design.

The compounds, number of doses and information about the role of each compound (treatment, negative control etc) is defined in the file "compound_list.tsv". The scripts below take this tsv file as input in order to design the layout on the plate.

The size of the plate has to be provided as number of rows and columns. The number of replicates and the plate barcode are also provided in the block of code below.

Design of the experiment and treatment layout (protocol 1)



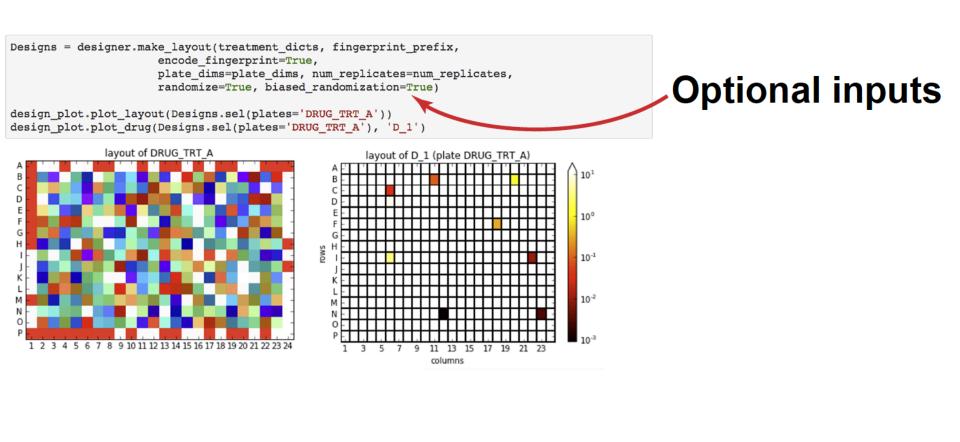
There are 20 untreated wells on the inner plate. Consider alloting more wells to negative con trols

Explanatory text

User inputs

Warning messages

Use Jupyter notebooks to keep track of design steps and export drug layout



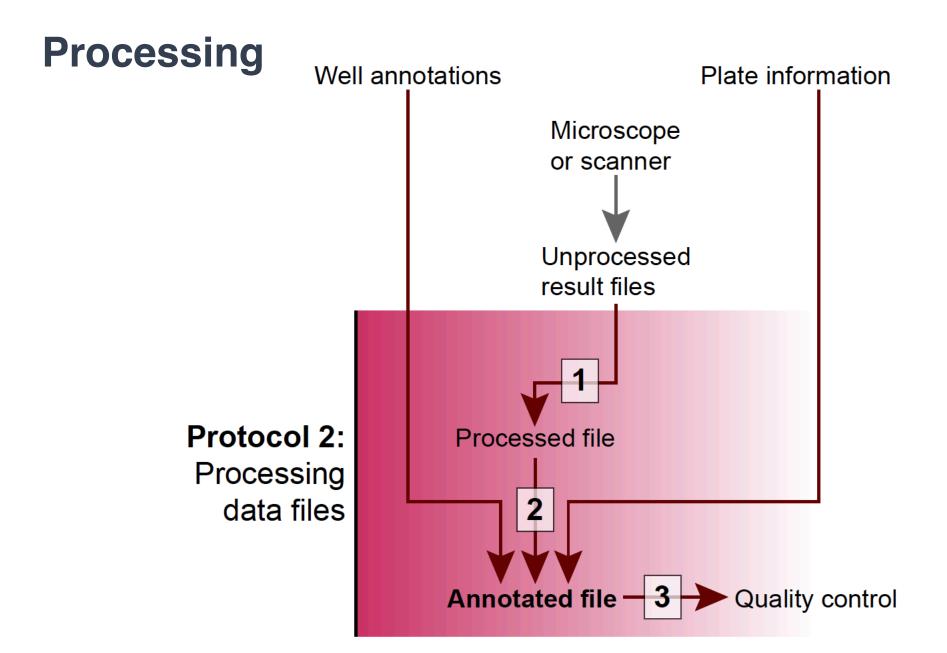
Limitations and space constraints in the design of plate-based experiments

• Control wells (both negative and positive)

• Number of concentrations for dose-response curves

• Number of replicates

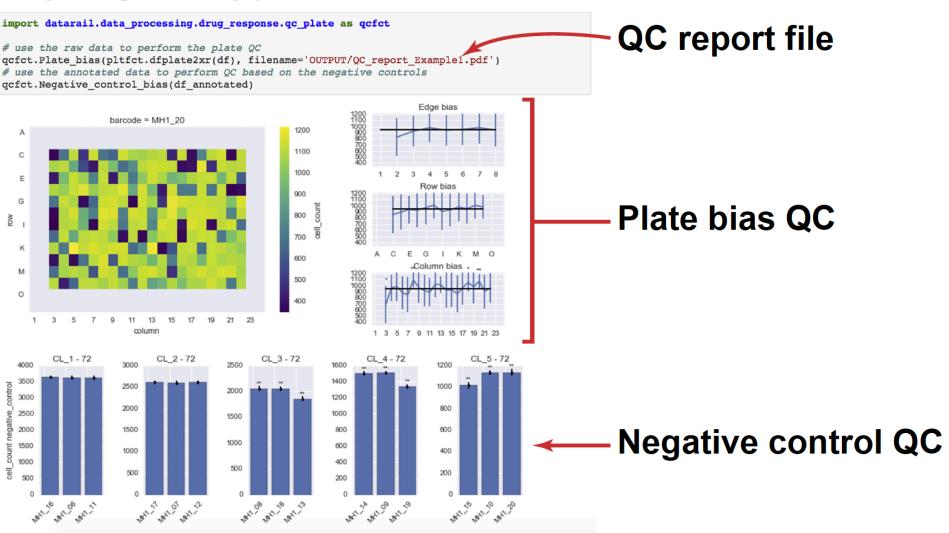
• Edge and plate-based effects



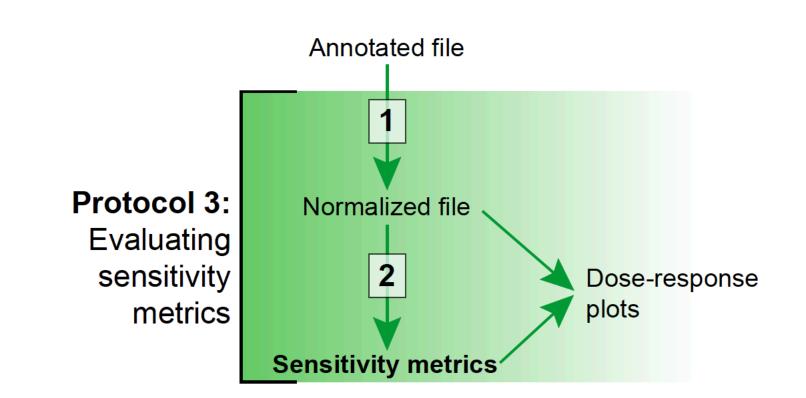
Use Jupyter notebooks to import and annotate results from experiments

Check for unwanted biases using embedded functions

Quality control (protocol 2, step 3)



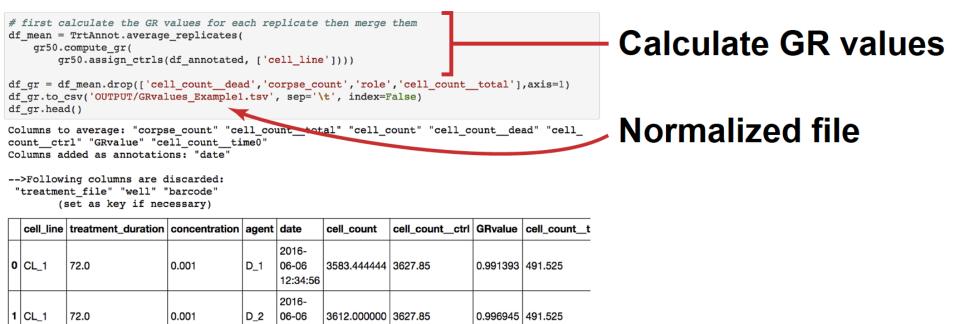
Analysis: data normalization and dose-response curve parametrization



Normalize the data to obtain the GR values

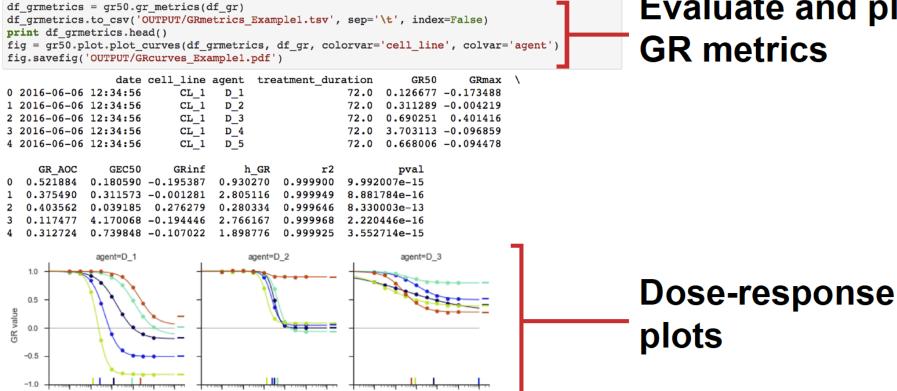
Calculate the GR values (protocol 3, step 1)

12:34:56



Fit a dose-response curve to obtain sensitivity metrics

Evaluate the GR metrics and plot the dose-response curves (protocol 3, step 2)



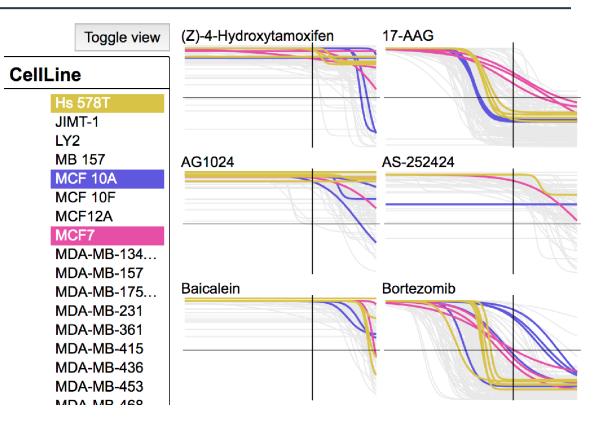
Evaluate and plot **GR** metrics

GRcalculator.org can replace the last part of the protocol

GRcalculator.org

Clark*, Hafner* et al., BMC Cancer, in review

Hafner*, Heiser* et al., Sci Data, in review



Note on the programmatic approach: advantages of scripts over UI-driven software

 Permanent record of the design and data processing

 Jupyter notebooks simplify use and allow reuse of scripts

 Less prone to unnoticed errors (e.g. excel spreadsheets)

- 1. Theory of drug response
- 2. Experimental setup
- 3. Designing and analyzing experiments
- 4. Biological examples
 - Case study
 - Efficacy vs. potency

Profiling the response of triple negative breast cancer models to kinase inhibitors

- Why study kinase inhibitors in TNBC?
 - Unmet clinical need
 - Patients have a poor prognosis, and no targeted therapy options
- GR metrics were used to enable comparisons across cell lines

Selection of cell lines and drug treatments

20 TNBC

6 HR+

4 Her2amp

2 NM

4 from PDX

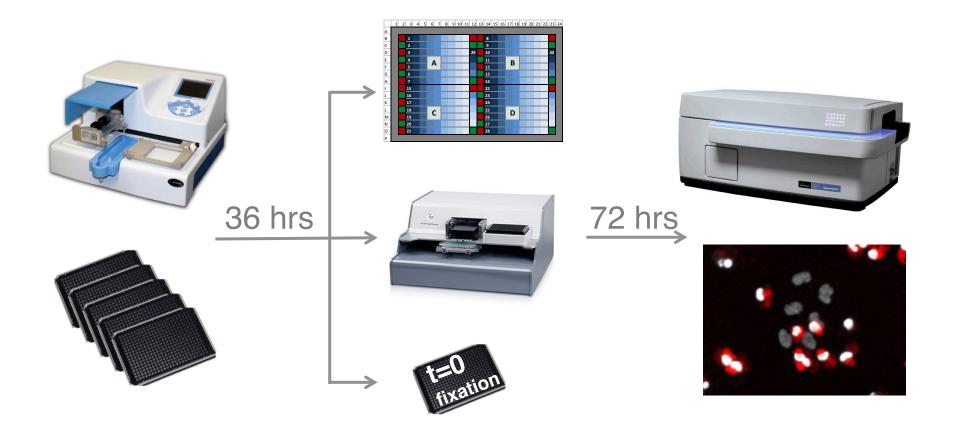
	Receptor	Molecular
Cell Line	Status	Subtype
BT-20	TNBC	Basal A
HCC1143	TNBC	Basal A
HCC1806	TNBC	Basal A
HCC1937	TNBC	Basal A
HCC70	TNBC	Basal A
MDA-MB-468	TNBC	Basal A
BT-549	TNBC	Basal B
CAL-51	TNBC	Basal B
HCC1395	TNBC	Basal B
HCC38	TNBC	Basal B
Hs 578T	TNBC	Basal B
MDA-MB-157	TNBC	Basal B
MDA-MB-231	TNBC	Basal B
MDA-MB-436	TNBC	Basal B
SUM1315	TNBC	Basal B
SUM149	TNBC	Basal B
SUM159	TNBC	Basal B
CAL-85-1	TNBC	Basal
CAL-120	TNBC	Luminal
MDA-MB-453	TNBC	Luminal
CAMA-1	HR+	Luminal
HCC1428	HR+	Luminal
HCC1500	HR+	Luminal
MCF7	HR+	Luminal
MDA-MB-134	HR+	Luminal
T47D	HR+	Luminal
HCC1954	HER2amp	Basal A
HCC1419	HER2amp	Luminal
MDA-MB-361	HER2amp	Luminal
SK-BR-3	HER2amp	Luminal
hTERT-hME1	NM	Basal
MCF 10A	NM	Basal
PDX-DFCI-1206	TNBC	N/A
PDX-DFCI-1258	TNBC	N/A
PDX-DFCI-1328	TNBC	N/A
PDX-HCI-002	TNBC	N/A

		Primary	Clinical		
	Drug Name	Target	Status		
	Alpelisib/BYL719	PI3Ka	Phase 3	٦	
	TGX221	PI3Kb	Preclinical		
	Taselisib/GDC0032	PI3Ka, g, d	Phase 1/2		
	Pictilisib/GDC0941	pan PI3K	Phase 2		
	Buparlisib/NVP-BKM120	pan PI3K	Phase 2		
	INK128/MLN0128	mTORC1/2	Phase 2		
	Torin2	mTOR/ATM/ATR	Tool		
	Everolimus	mTOR1	Approved		
	Ipatasertib/GDC0068	AKT	Phase 1/2		
	PF-4708671	p70S6K	Phase 1		24 k
	Neratinib/HKI272	EGFR/HER2	Phase 3		
	Tivantinib/ARQ197	MET	Phase 3	L	inhi
	Cabozantinib	VEGFR2/MET	Approved	1	-
	Cediranib/AZD2171	VEGFR/cKIT	Phase 3		
Х.	Ceritinib/LDK378	ALK	Phase 2/3		
	Saracatinib/AZD0530	SRC	Phase 2/3		
	Dasatinib	BCR/ABL	Approved		
	Trametinib/GSK1120212	MEK	Phase 2		
	Luminespib/NVP-AUY922	HSP90	Phase 2		
	Palbociclib/PD0332991	CDK4/6	Phase 3		
	Dinaciclib/SCH727965	pan CDK	Phase 1		
	Abemaciclib/LY2835219	CDK4/6	Phase 3		
	Volasertib/BI6727	PLK	Phase 2/3		
	AZD7762	CHK1/2	Phase 1	2	
	Olaparib/AZD2281	PARP	Phase 3	٦	4 mis
	ABT-737	Bcl2/XL	Tool		
	A-1210477	Mcl-1	Tool		inhib
	Vorinostat	HDAC	Phase 2	1	_
	Paclitaxel	Chemotherapy	Approved		
	Doxorubicin	Chemotherapy	Approved		• 3 ch
	Cisplatin	Chemotherapy	Approved	럳	
	Etoposide Topotecan	Topoisomerase II			4 DN
	Bleomycin	Topoisomerase I Radiomimetic	Approved		
	Ionizing radiation	DNA damage	Approved		dam
	ionizing radiation	DNA uamage	Approved	-	

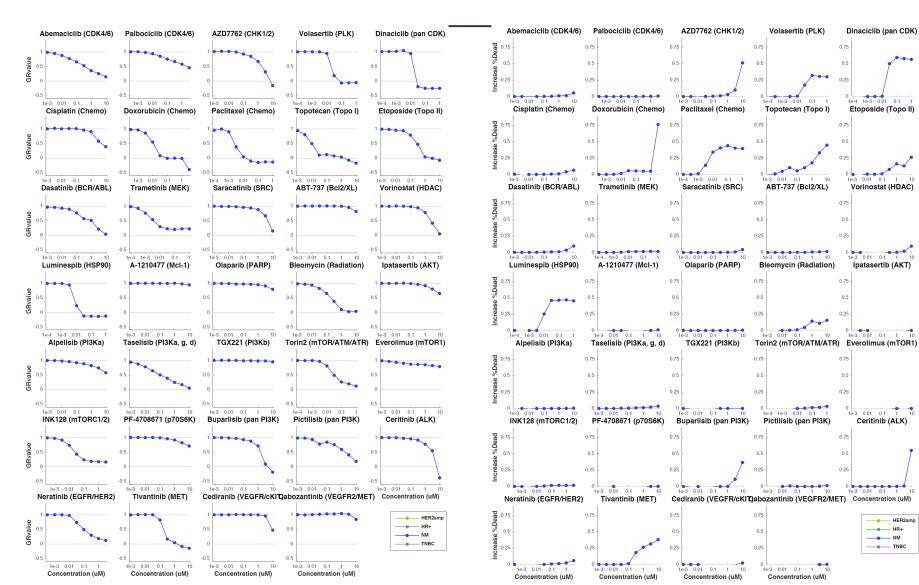
kinase bitors

SC bitors emo NA nage

Data collection workflow



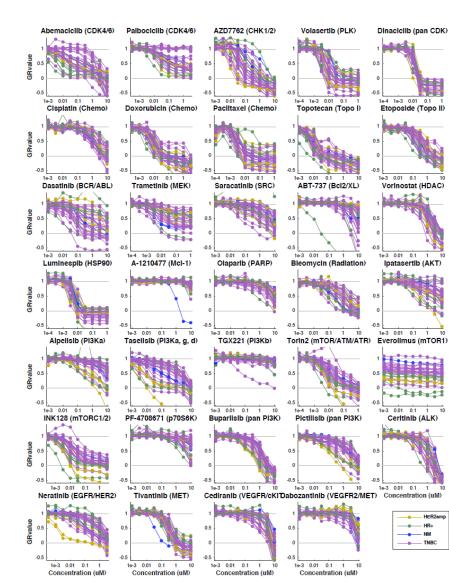
Dose response results for one cell line

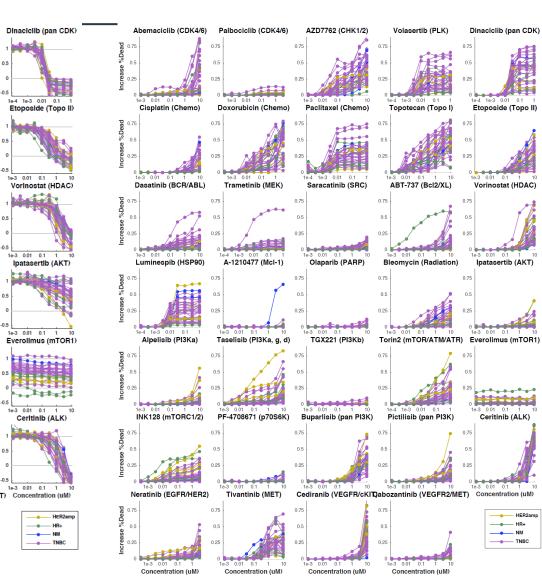


10

HER2am

Dose response results for all cell lines





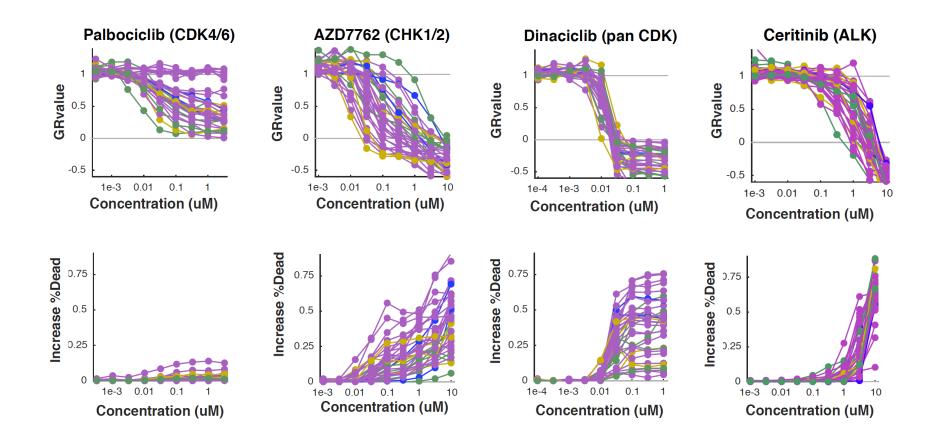
0.1

HEB2omr

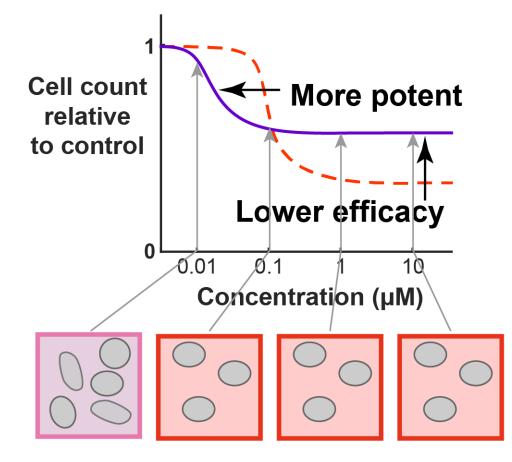
HR+

NM - TNBC

Diversity in response profiles...



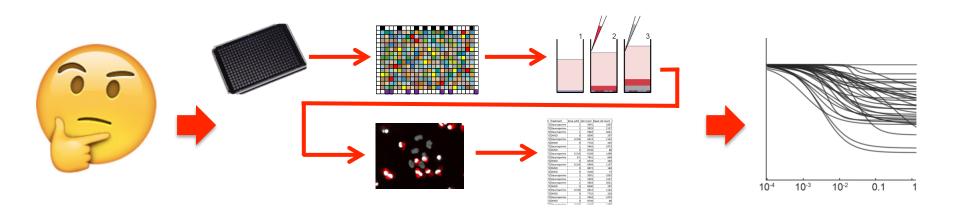
...occurs in both potency and efficacy across cell lines and drugs



We aim to understand the biology underlying these differences with the goal of being able to predict the response of a cell line to a perturbation.

What about reproducibility?

- Planning, and optimization
- Automate as much as possible, know how it works
- Script the experimental design and analysis
- Use appropriate metrics for your experiment



References

- Hafner*, Niepel* et al. Nat Methods, 2016, 13:521-7
- Hafner, et al., Nat Biotech, 2017, accepted

- Hafner*, Niepel*, Subramanian* et al., Curr Protoc Chem Biol, in press (June 2017)
- Niepel*, Hafner* et al., Curr Protoc Chem Biol, in press (June 2017)

Acknowledgements

Laboratory of Systems Pharmacology

Sorger Lab/LSP:

- Mirra Chung
- Marc Hafner
- Caitlin Mills
- Jeremy Muhlich
- Mario Niepel
- Peter Sorger
- Kartik Subramanian
- Liz Williams

Funding:

NIH LINCS grant
U54-HL127365

ICCB-L:

٠

٠

•

•

Stuart Rudnicki

Caroline Shamu

Rachel Warden

Richard Siu

Jen Smith

<u>marchafner.hms@gmail.com</u> <u>caitlin_mills@hms.harvard.edu</u>

http://github.com/datarail

GRcalculator.org