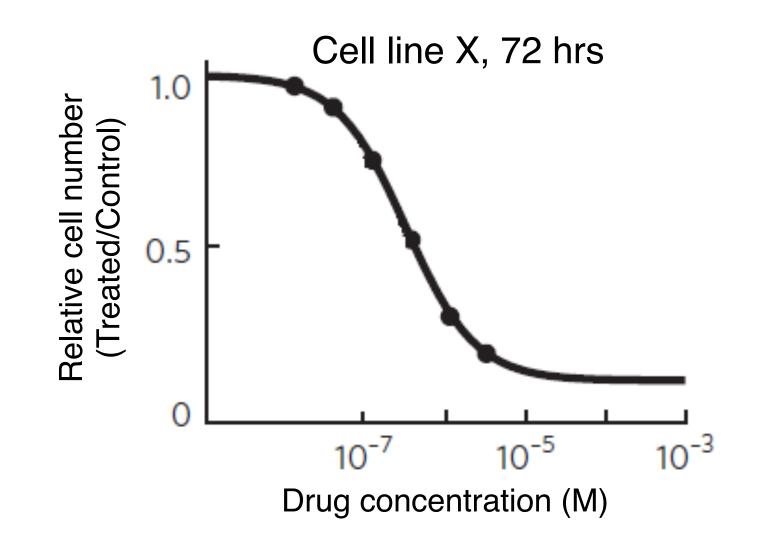
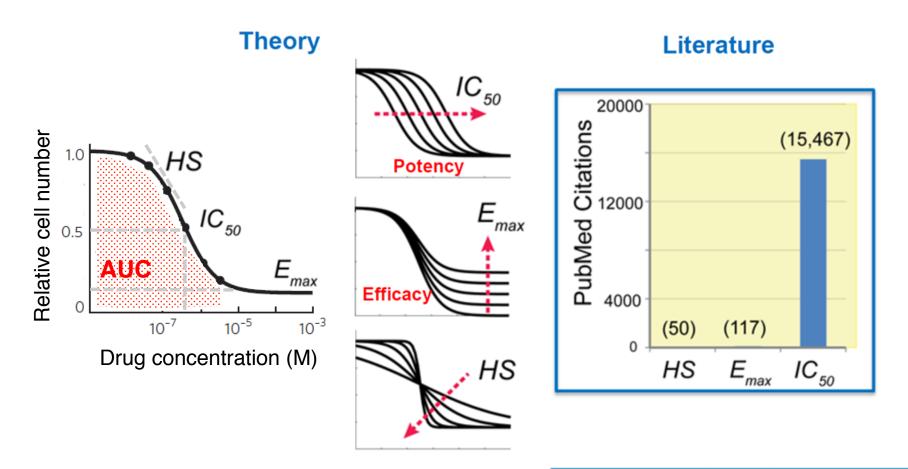
Optimized Experimental and Analytical Tools for Reproducible Drug-Response Studies


Caitlin Mills & Kartik Subramanian Department of Systems Biology & Laboratory of Systems Pharmacology Harvard Medical School

4 Optimized Experimental and Analytical Tools 3 r Reproducible Drug-Response Studies 2


Caitlin Mills & Kartik Subramanian

Department of Systems Biology & Laboratory of Systems Pharmacology Harvard Medical School

In-vitro drug-response studies in cancer are often based on relative cell number quantifications

Drug-response in cancer research and conventional metrics based on relative cell number

NATURE CHEMICAL BIOLOGY DOI: 10.1038/NCHEMBIO.1337

ARTICLE

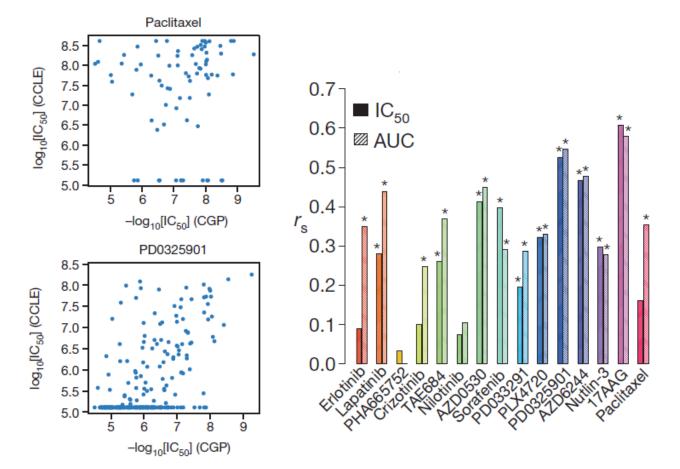
Metrics other than potency reveal systematic variation in responses to cancer drugs

Mohammad Fallahi-Sichani¹, Saman Honarnejad¹, Laura M Heiser², Joe W Gray² & Peter K Sorger^{1*} © 2013 Nature America, Inc. All rights reserved.

Irreproducible pharmacogenomics and other drug-dose response based studies

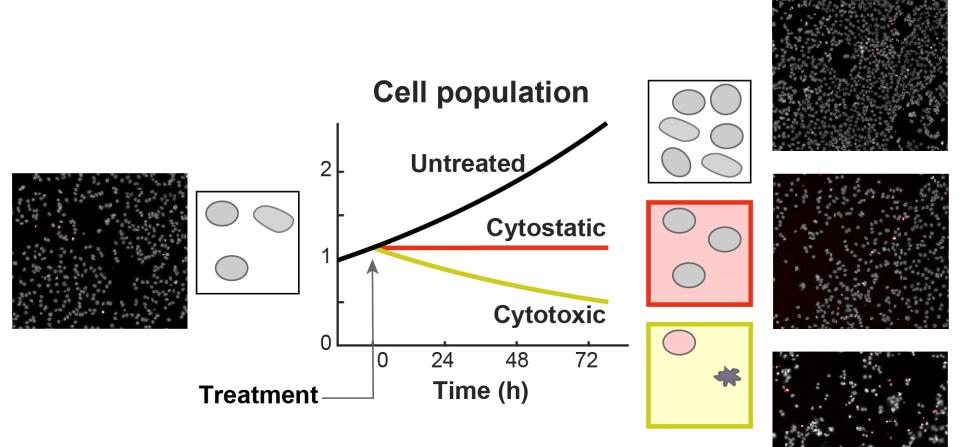
Inconsistency in large pharmacogenomic studies

Benjamin Haibe-Kains, Nehme El-Hachem, Nicolai Juul Birkbak, Andrew C. Jin, Andrew H. Beck, Hugo J. W. L. Aerts & John Quackenbush

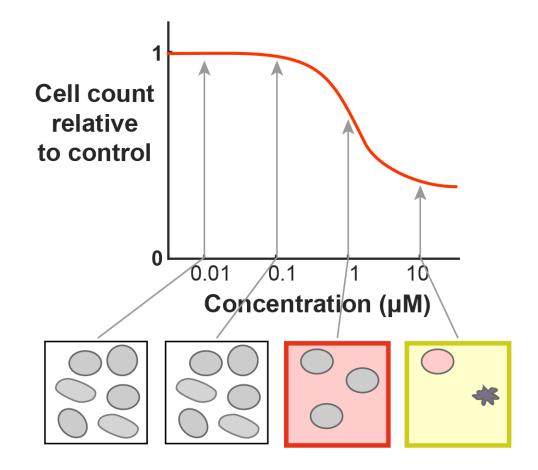

Affiliations | Contributions | Corresponding author

Nature 504, 389–393 (19 December 2013) | doi:10.1038/nature12831

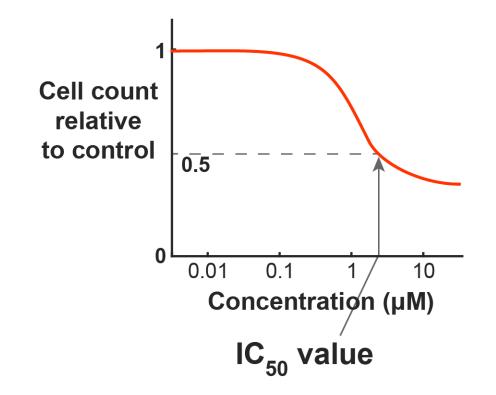
- 1. CCLE & GDC, Nature, Dec 2015
- 2. Haverty et al., Nature, May 2016
- 3. Bouhaddou et al. Nature, Dec 2016
- 4. Mpindi et al., Nature, Dec 2016
- 5. Safikhani et al., Nature, Dec 2016
- 6. Geeleher et al., Nature, Dec 2016


Irreproducible pharmacogenomics due to irreproducibile IC50 and other metrics

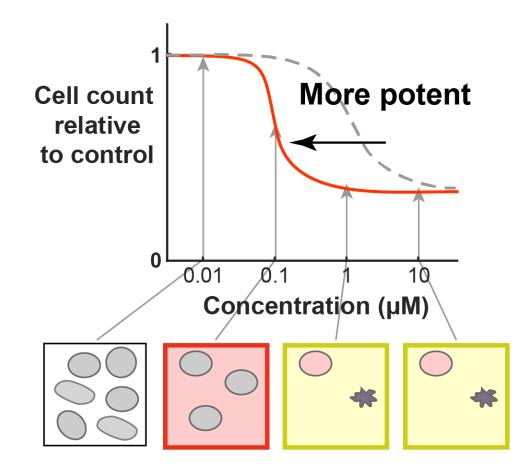
Drug-dose response correlation between Cancer Genome Project(CGP) and Cancer Cell Line Encyclopedia(CCLE):



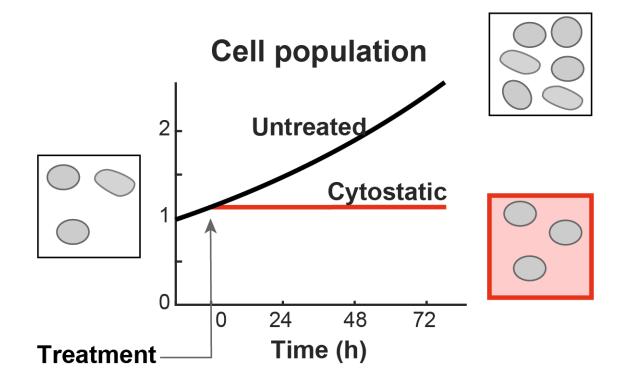
Inconsistency in large pharmacogenomics studies, Haibe-Kains et al, Nature, 2013


Measuring drug response is essential in pharmacology

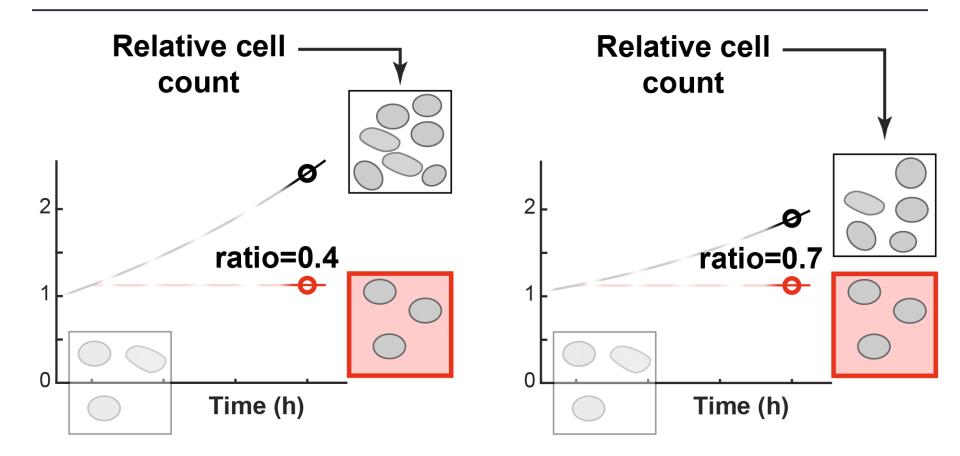
Drug response is assayed at multiple doses

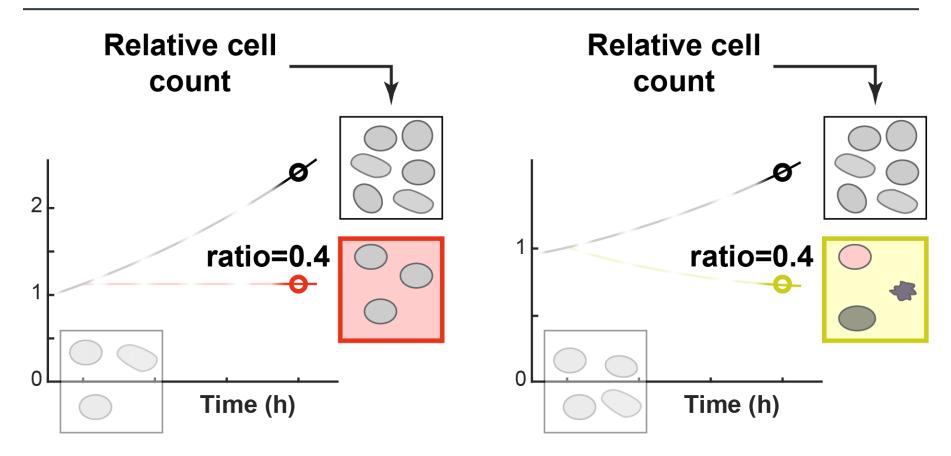


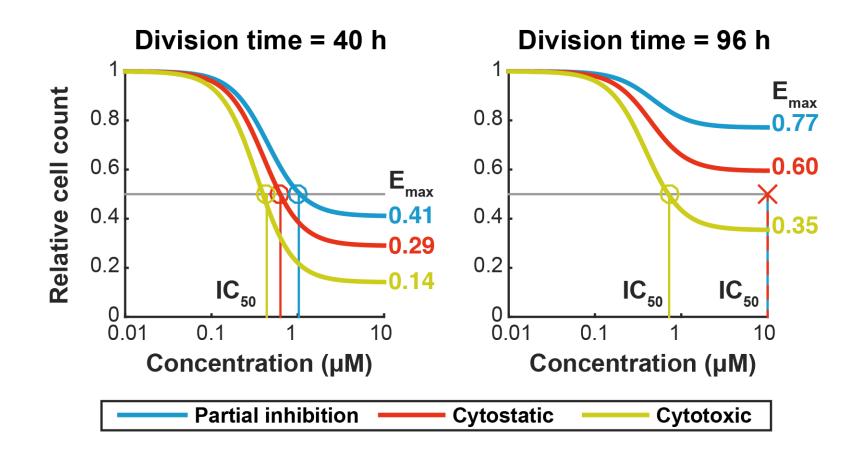
Drug response is assayed at multiple doses

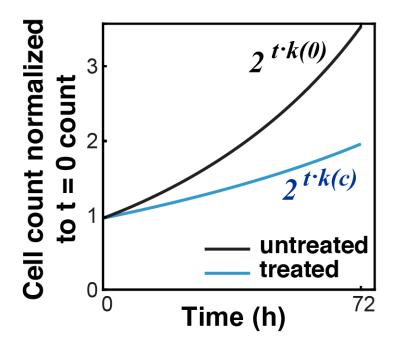


 IC_{50} value is the concentration at which the relative cell count is 0.5.


Dose response curves vary across cell lines

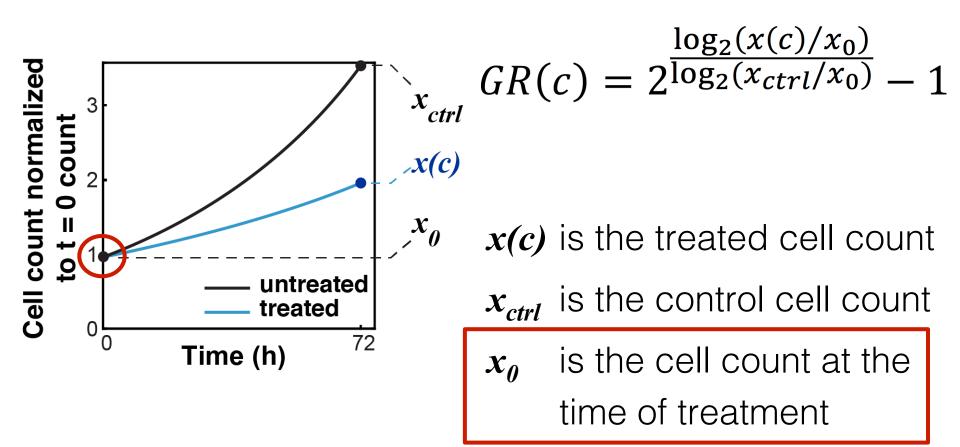

Assays that have a growing population


Relative cell count is biased by division rate

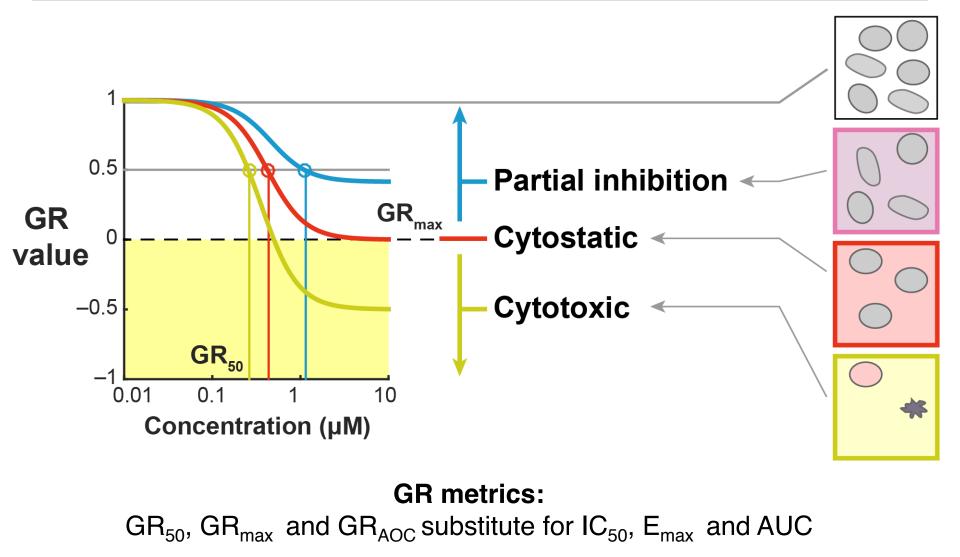

Relative cell count does not distinguish underlying phenotypes

Slow growing cell lines look systematically more resistant when using relative cell count

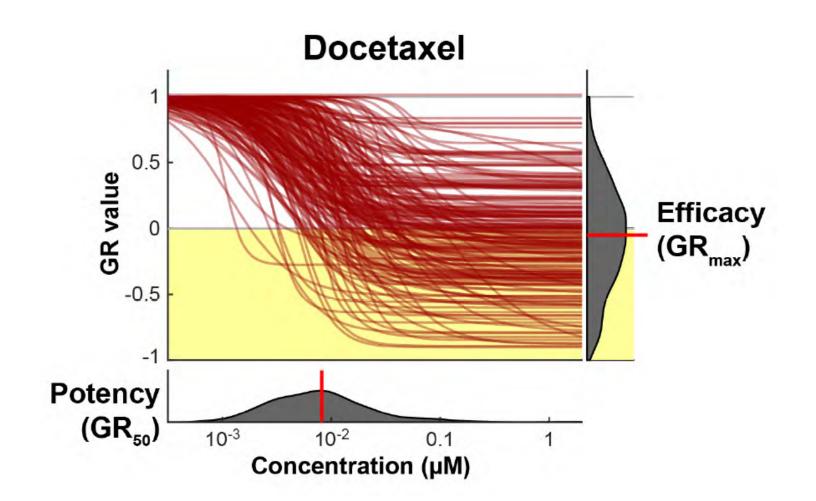
Normalized growth rate inhibition (GR) value

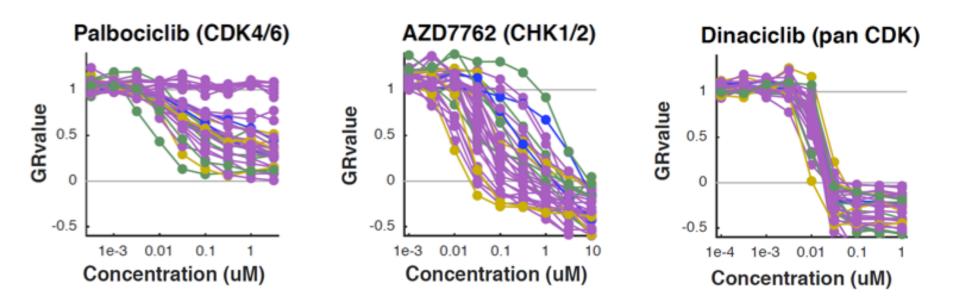

$$GR(c) = 2^{k(c)/k(0)} - 1$$

k(c) is the treated growth rate*k(0)* is the control growth rate

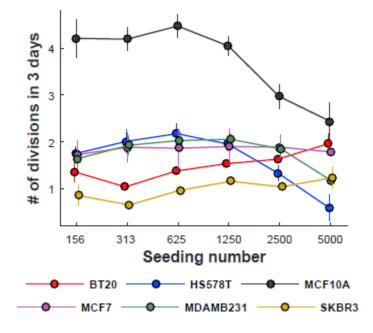


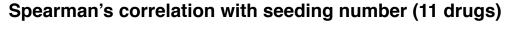
Marc Hafner

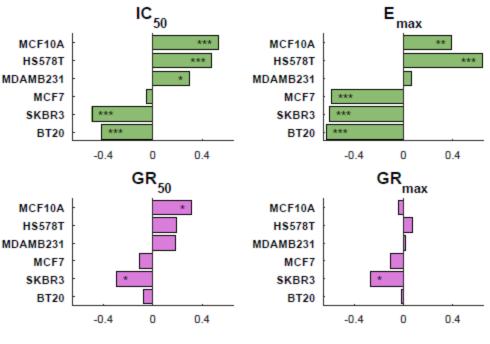

GR values rely on three measures of cell count


GR values are independent of the division rate and directly relate to the phenotype

GR metric allows for an intuitive assessment of phenotypic effects across cell lines and drugs

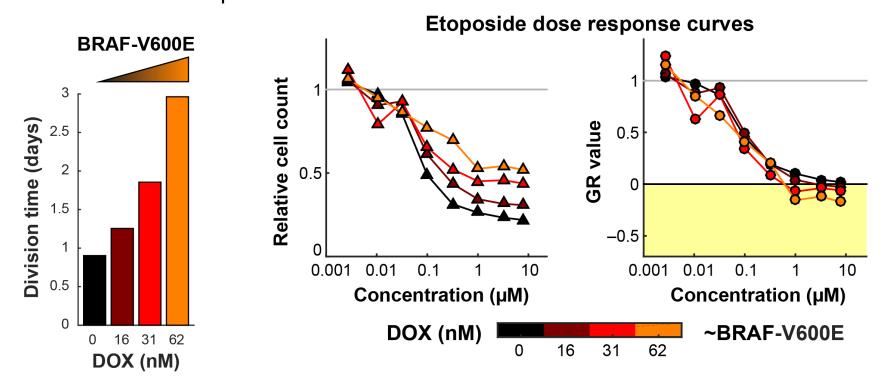

GR metric allows for an intuitive assessment of phenotypic effects across cell lines and drugs

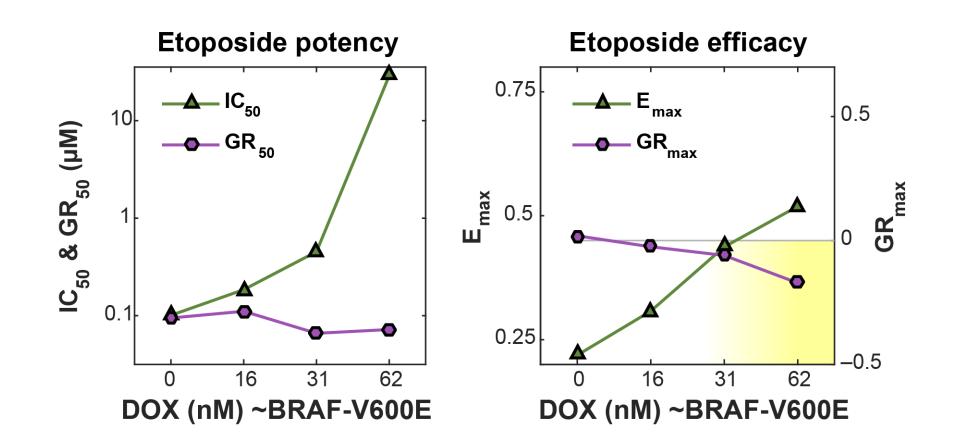



34 breast cancer cell lines

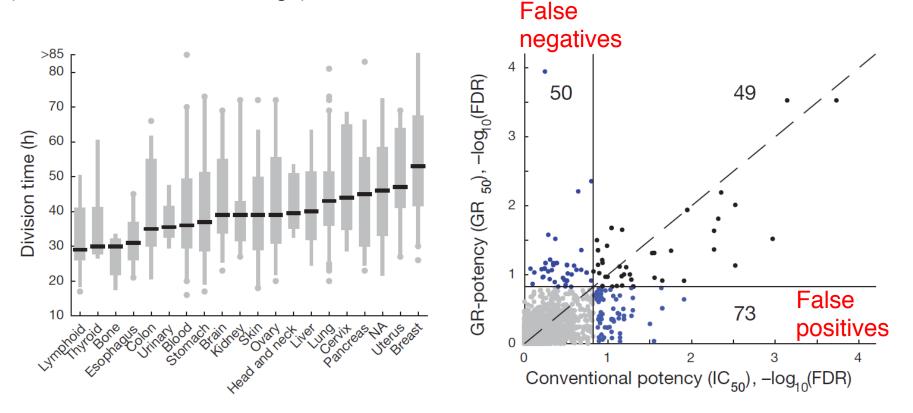
Cell seeding affects division time which biases traditional sensitivity metrics

Seeding density affects the number of divisions. \rightarrow IC₅₀ and E_{max} are correlated with density.




Genetic alterations affect division time which biases traditional sensitivity metrics

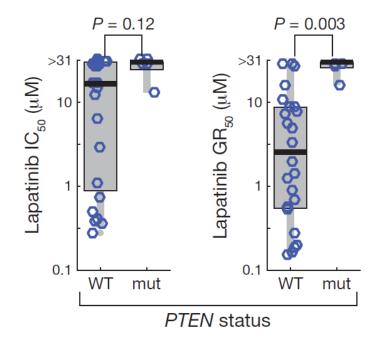
Etoposide sensitivity in HME RPE-1 cells with inducible BRAF^{V600E} expression.


Thanks to Jia-Yun Chen for the cell line

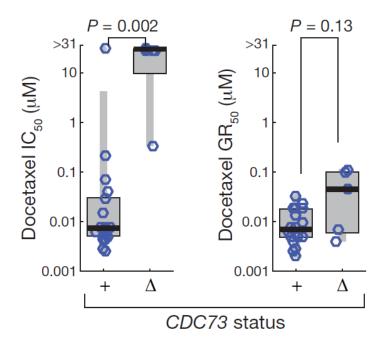
Genetic alterations affect division time which biases traditional sensitivity metrics

GR metrics correct growth rate confounders in pharmacogenomics and reveal true associations

Re-Analysis using GR metric of Genentech Cell Line Screening Initiative (409 cell lines and 16 drugs):

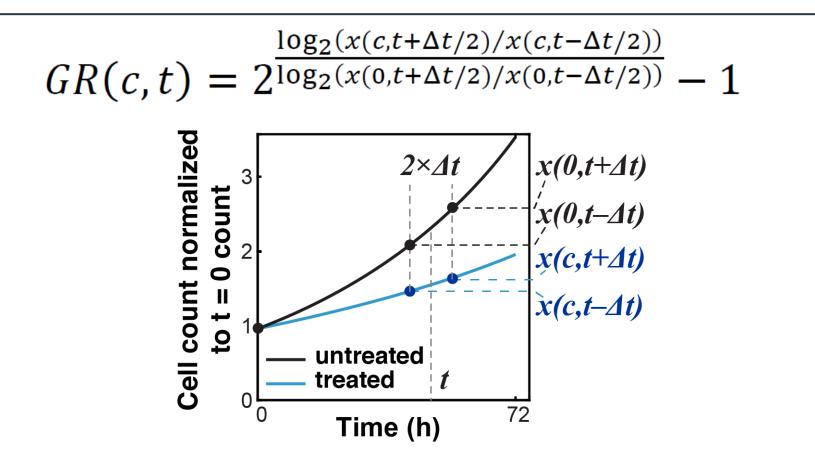


Alternative drug sensitivity metrics improve preclinical cancer pharmacogenomics

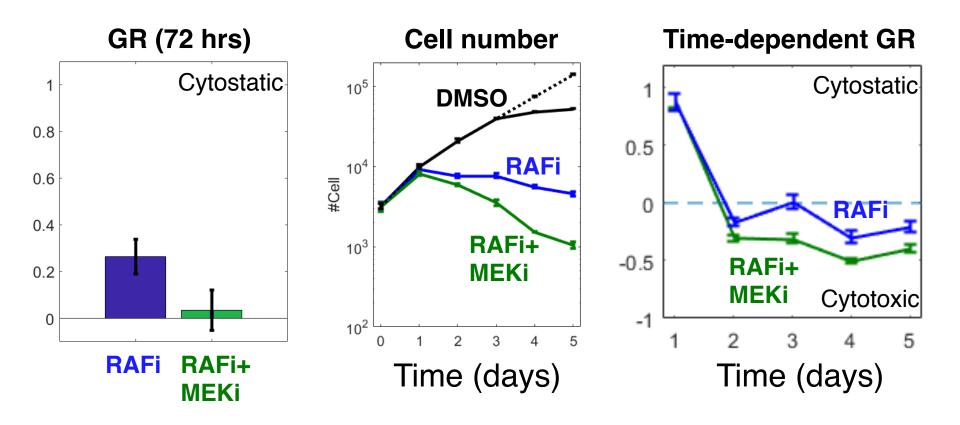

Marc Hafner, Mario Niepel & Peter K Sorger

GR metrics correct growth rate confounders in pharmacogenomics and reveal true associations

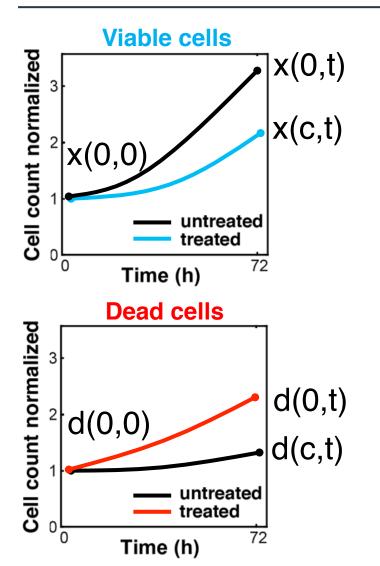
False negative example: PTEN mutants ARE insensitive to Lapatinib



False positive example: Δ CDC73 are NOT sensitive Docetaxel


Alternative drug sensitivity metrics improve preclinical cancer pharmacogenomics Marc Hafner, Mario Niepel & Peter K Sorger

Time-dependent GR metrics


For evaluating $GR_{50}(t)$ and $GR_{max}(t)$ and quantifying adaptive response or late drug action.

Time-dependent GR can reveals dynamic changes in drug-response effects

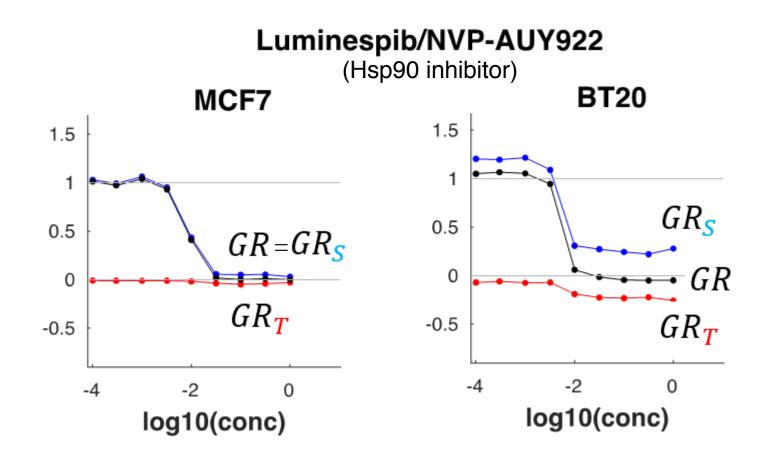
BRAF^{V600E} melanoma cell line A375

Decoupling cytostatic and cytotoxic drugresponses by GR metrics

Normalized growth rate:

$$\frac{k_{s}(c)}{k_{s}(0)} = \left(1 + \frac{d(c,t) - d_{0}}{x(c,t) - x_{0}}\right) \cdot \ln\left(\frac{x(c,t)}{x(0,0)}\right) / \ln\left(\frac{x(0,t)}{x(0,0)}\right)$$

Normalized death rate:

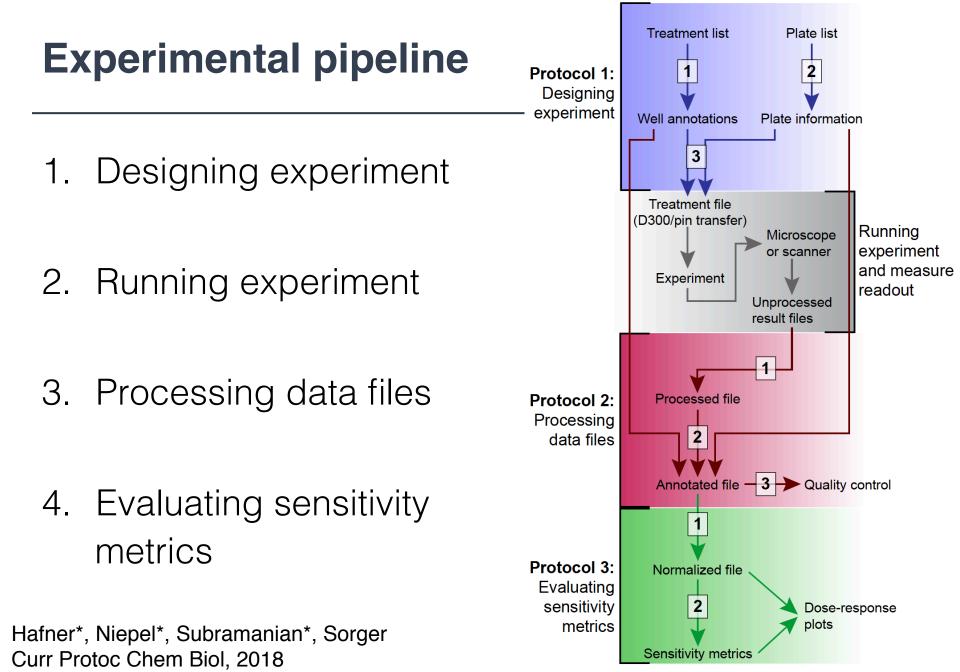

$$\frac{k_{\mathbf{T}}(c)}{k_{\mathbf{S}}(0)} = -\left(\frac{d(c,t) - d_0}{x(c,t) - x_0}\right) \cdot \ln\left(\frac{x(c,t)}{x(0,0)}\right) / \ln\left(\frac{x(0,t)}{x(0,0)}\right)$$

Decoupled GR metric:

$$GR_{S} = 2^{\frac{k_{S}(c)}{k_{S}(0)}} - 1$$
 $GR_{T} = 2^{\frac{k_{T}(c)}{k_{S}(0)}} - 1$

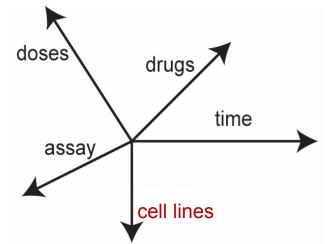
$$GR = GR_{S} + GR_{T} + GR_{S} \cdot GR_{T}$$

Similar drug responses can be due to different combinations of cell growth and death



Conclusions on GR metrics as analytical tools for reproducible drug-dose responses

GR metrics...


- ... eliminate confounders that act by cell division bias (cell seeding, genetic background, etc...)
- ... can be extended to quantify time-dependent drugresponse and to decouple cytostatic and cytotoxic effects
- .. improve reproducibility in studies that rely on measuring growth inhibition, such as in pharmacogenomics

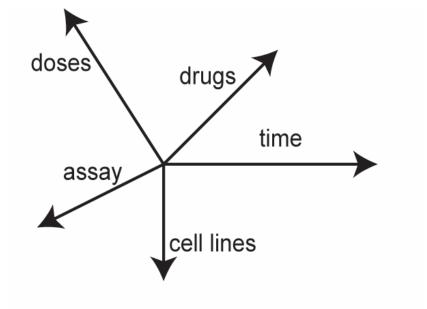
To consider before you start: cell lines

- How many cell lines do I want to test?
- Are they amenable to imaging?
- Are they adherent?
- Do they grow in a monolayer?
- How densely should they be seeded?

To consider before you start: drugs

How many drugs do I want to collect dose response data for?

drug


cell lines

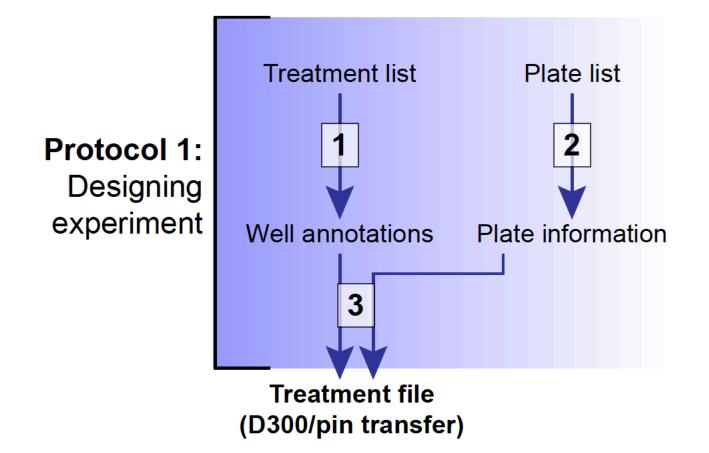
assay

time

- Are they DMSO soluble?
- How many dose points do I need?
- What's an appropriate dose range?
- How many time points do I want to test?
- How long should the assay run?
- What are the expected effects of drug treatment?

To consider before you start

96 or 384 well plates


Do I need to use the GR approach?

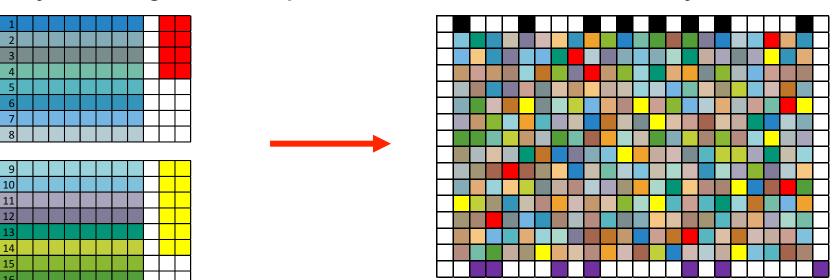
It depends on how you answered the previous questions.

Relative cell counts are valid when the untreated controls do not change:

- Phenotype is not related to cell growth
- Untreated cells do not grow
- Short assays during which growth is negligible

Experimental design

Design scripts available at github.com/datarail/datarail


GitHub, Ir	ic. [US] https://github.com/datarail/datarail
	III readme.md
	Computational workflow for design of dose-response experiments
	Installation
	The repository can be installed from command line as shown below
	<pre>\$ git clone https://github.com/datarail/datarail.git</pre>
	• To install dependencies and enable importing modules from any location on your local machine, cd into the datarail folder, followed by the command below.
	<pre>\$ pip install -e .</pre>
	Getting started
	• Set up the well and plate level metadata files as shown in datarail/examples
	Start a Jupyter notebook or IPython session.
	 The layout of drugs on doses across 96/384 well plates can be constructed using the code below. The pandas dataframe dfm contains the desingned layout. Refer to datarail/examples for a detailed explanation with examples.
	<pre>import pandas as pd from datarail.experimental_design import process_assay as pa dfp = pd.read_csv('plate_level_metadata.csv') dfm = pa.randomize_wells(dfp) dfm.to_csv('dose_response_layout_metadata.csv', index=False)</pre>
	• The metadata file can be exported to a .hpdd file that can be used by the D300 printer. The stock concentraion

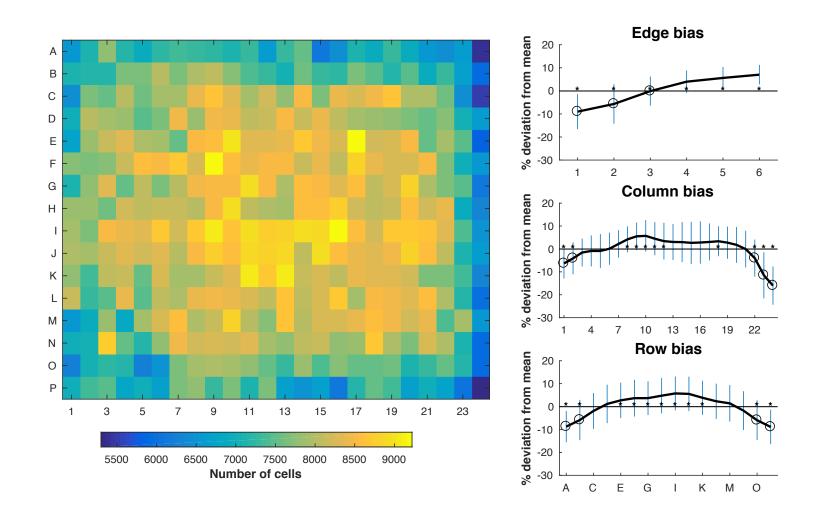
Branch: mast	datarail / datarail / examples / create_plate_layout.ipy	nb	Find file Copy pat
smkartik	c included relevant lines of code and documentation to export design to		d928a53 4 days ag
ontributor	r		
5 lines (1	144 sloc) 4.53 KB	Raw Blame	History
	The example script below demonstrates how a rando an initial description (see input_file.csv) of the experim		rated from
	<pre>import pandas as pd from datarail.experimental_design import process_assay from datarail.experimental_design import plot_plate_lay from datarail.experimental_design import hpdd_utils as %matplotlib tk</pre>	yout as ppl	
	The input file (see input_file.csv) should be broad description of t following couplins agent : lists the names of drugs. Combinations are to spece		
-	'agent1, agent2'	cinca as comma seponated strings. Fo	i oxampio
	max_doseum : lists the highest dose for each agent. num_doses : lists the number of doses for each agent.		
	role : lists the intended role for each agent 'treatment'	, or 'positive_control'	
	num_replicates : lists number of times the dosing schme same plate.	e of a drug (or a combination) is replic	ated on the
	equivalent : 0 if the combination should comprise of the make up the combination	full cartesian product. 1 if only equiv	alent doses
	The plate level file (see plate_id.csv) should provide a description of p	plate level metadata. It should contain the fo	ollowing columns
	barcode : list of barcodes (plate identifiers) cell_line: name of cell lines in each plate (comma seperate)	nd namoa)	
-	timepoint: time point corresponding to each plate. Set to		be used as

Set up library plates for pin transfer for large scale experiments

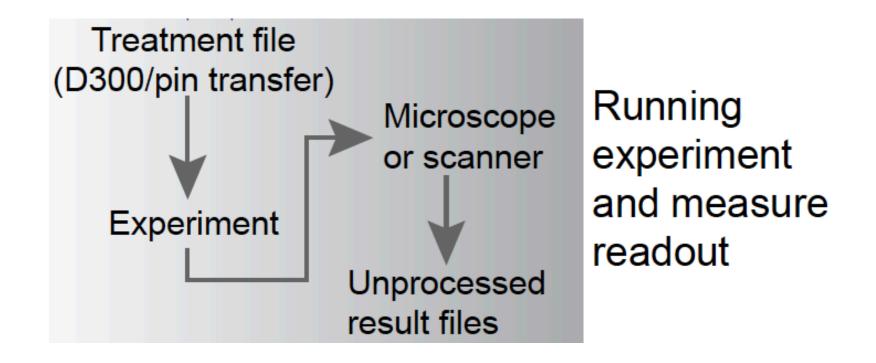
Manual layout of drugs on source plates

Randomized Library Plates

Use controls to 'barcode' library plates.

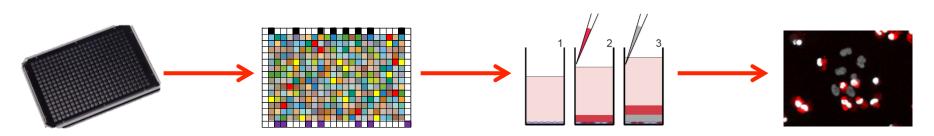

Use other automation for pilot, follow-up and smaller experiments

Home Advanced Current Protocol													
Run Undo Undo Copy All Wells Cipboard	Set Titration Targeted Synergy Q	uick Enzyme PCR Norr Nate Profile	malize Randomize Vie	All Plates									
Fluids 🗭 Plates 🗭				+									
URKAI 16 μL ② ♦ Plate 1 – 171108_DDD_69 Additional volume: 60 μL DMSO limit: 2%													
0.50 µL O 🏠	1 1 2	3 4 5	6 7 8 9	10 11 12 13	14 15 16 17 18	19 20 21 22 23 24							
0.50 µL ©	A												
15.8 µL C 🌢	В												
0.16 µL ©	с												
18.7 µL 💿 🌢	D												
Normalization	E												
	F												
	G												
	н												
	L												
	к												
	м												
	0												
Show I	P												
Show I	_												


Design steps to improve reproducibility

- Randomization of the treatments across multiple technical replicates
- Standardize nomenclature, barcode plates
- Control for plate bias (across day 0 plate; positive & negative controls across treatment plates)
- Robotic treatments with the D300 or pin transfer
- Exclude edge wells whenever possible

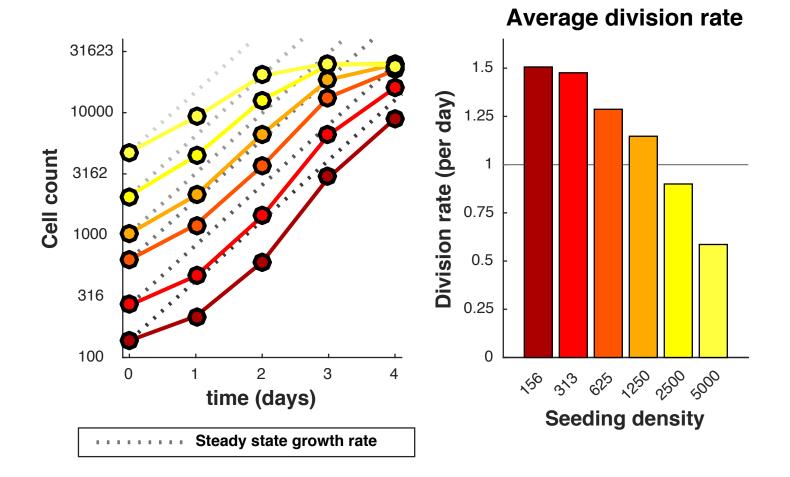
Randomization can mitigate edge effects



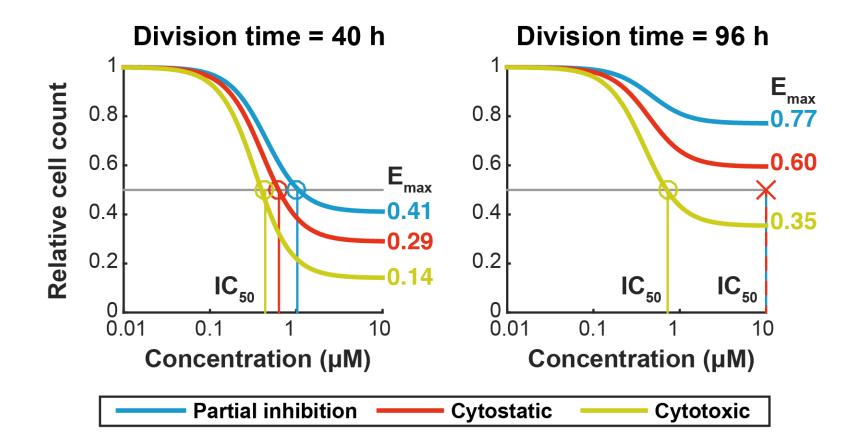
Running the experiment

Experimental design is complete. Now what?

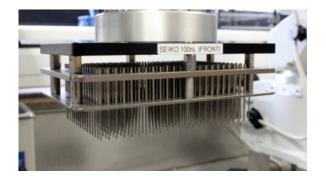
- Grow (happy) cells
- Seed cells at appropriate densities in multi-well plates
- Deliver drugs to multi-well plates
- Stain and fix cells
- Image cells
- Extract quantitative data from images



Cell seeding


- Seed plates at an appropriate density from parent plates in log-phase growth
- Use automation if possible
- Barcode plates to keep track of them

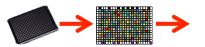
Cell seeding density influences growth rate...

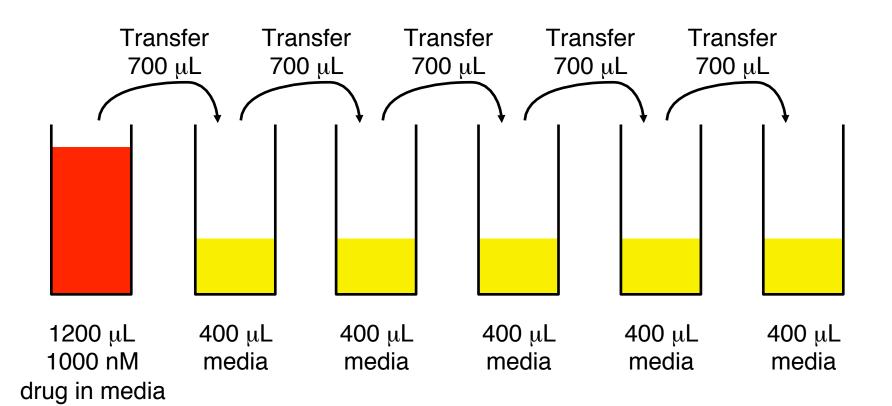


...which influences the dose response

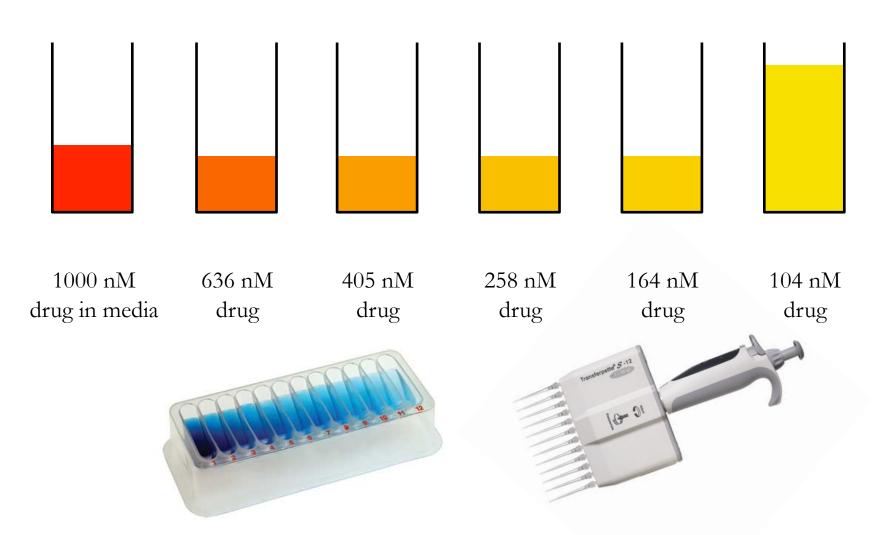
Drug delivery via pin transfer

- For simultaneous delivery of many drugs
- For large scale experiments (many cell lines, conditions)
- Facilitates reproducibility




Drug delivery via digital drug dispenser

- For accurate delivery of a few drugs
- Pilot experiments- to identify appropriate doses
- Follow-up experiments, 'hit' validation
- Drugs that cannot be prepared in DMSO

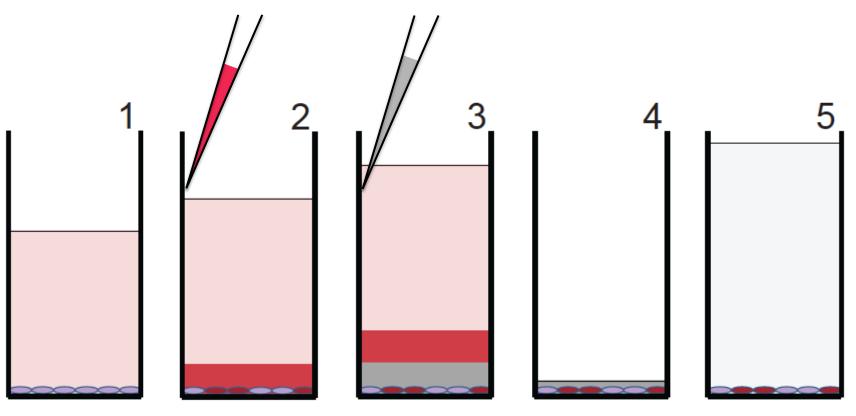


No automation? Use serial dilutions

and multichannel pipettes

Dye-drop assay reagents

• Minimally-disruptive, reagent-sparing cell staining and fixation protocol



Dye-drop assay protocol

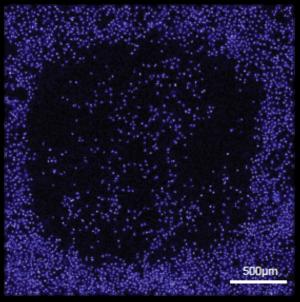
- Stain: Hoechst + LDR in 10% optiprep in PBS
- Fix: 4% formaldehyde in 20% optiprep in PBS

Plate washer

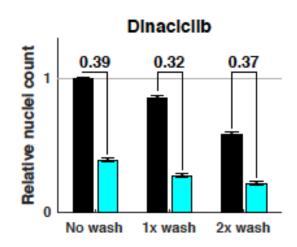
 Uniform and controlled aspiration and liquid dispensing

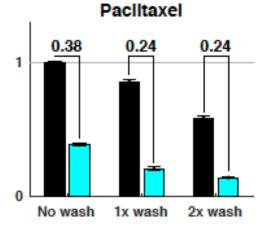
• Is repeat washing really that bad?

Repeat washing can result in cell loss...

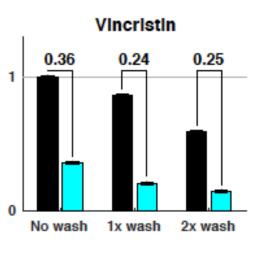

No wash

<u>Sour</u>.

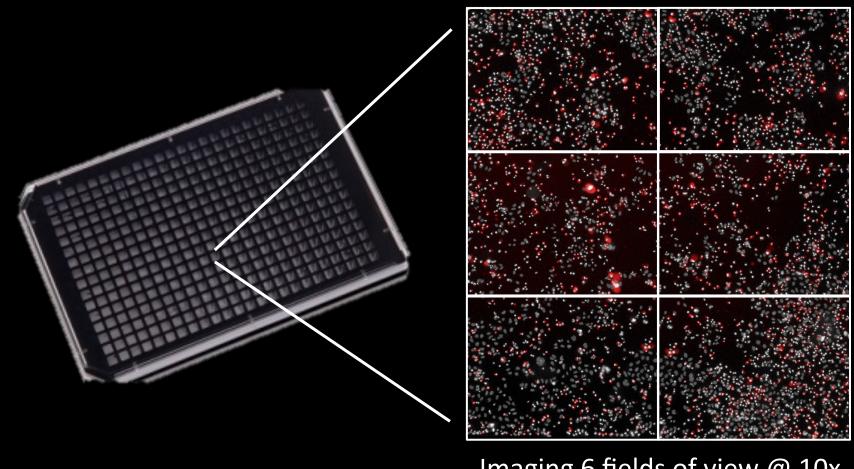

PBS wash x 1


<u>.500</u>m

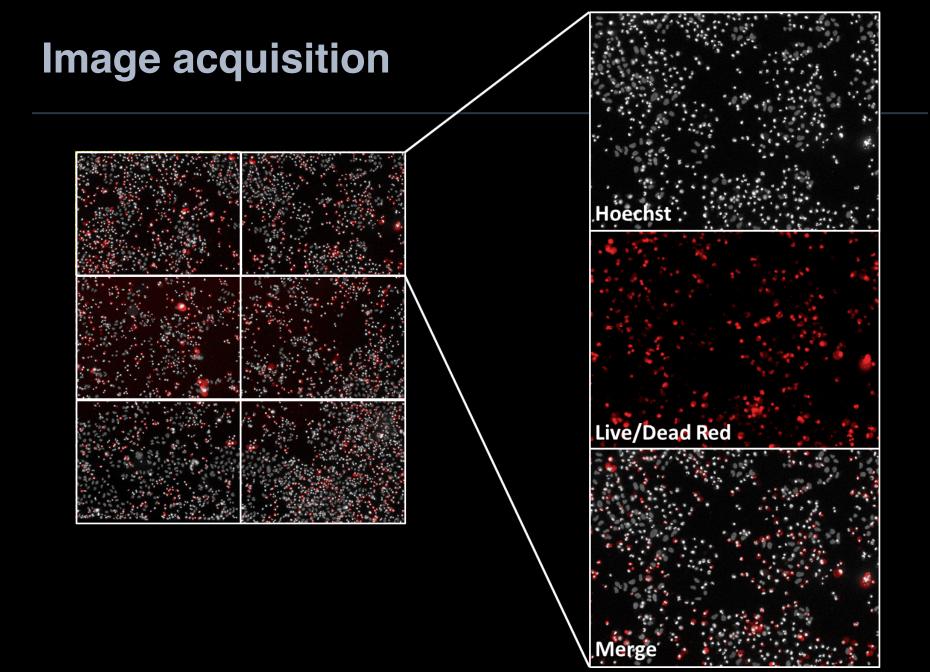

PBS wash x 2

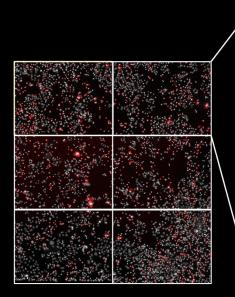


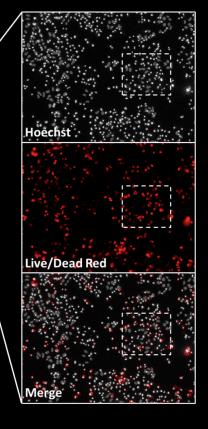
...that can bias your results


Image acquisition

- Operetta microscope with plate hotel, barcode reader & robot or similar
 - Automated data collection for 40+ plates




Image acquisition



Imaging 6 fields of view @ 10x captures *almost* the entire well

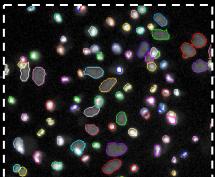
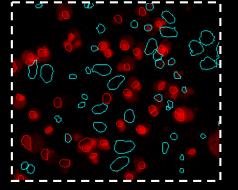
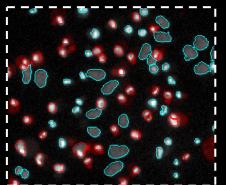
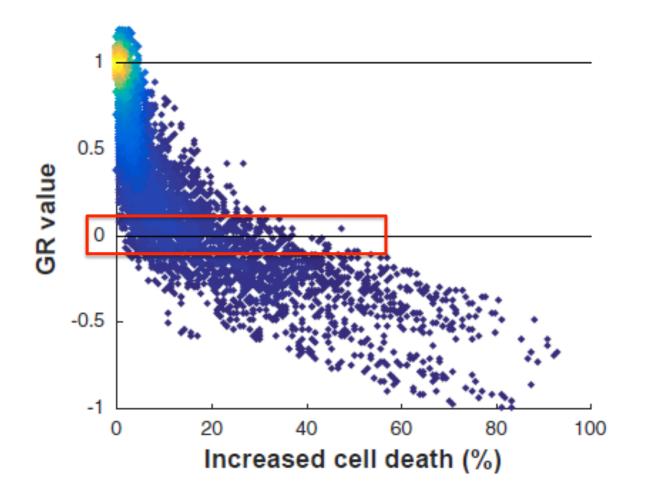


Image analysis



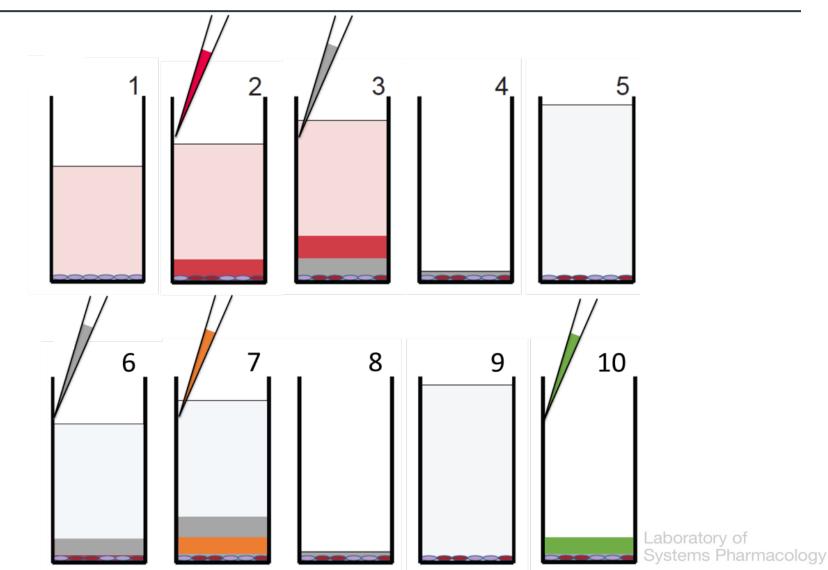

1. Segment nuclei

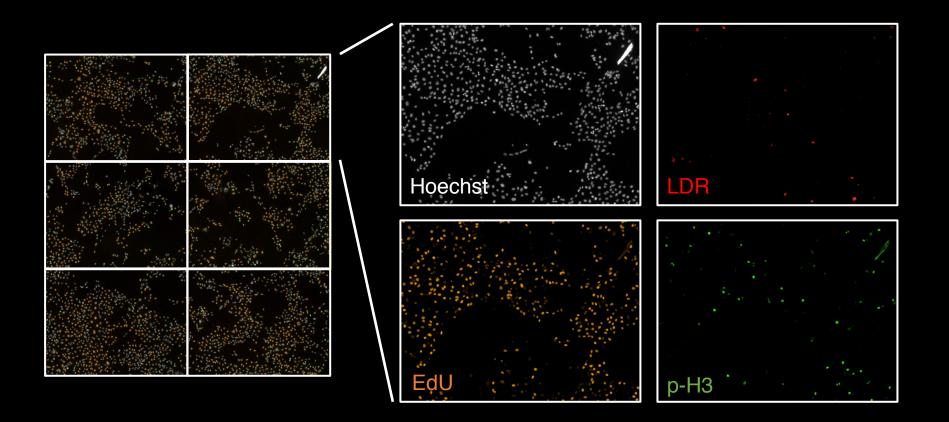
2. Measure LDR signal

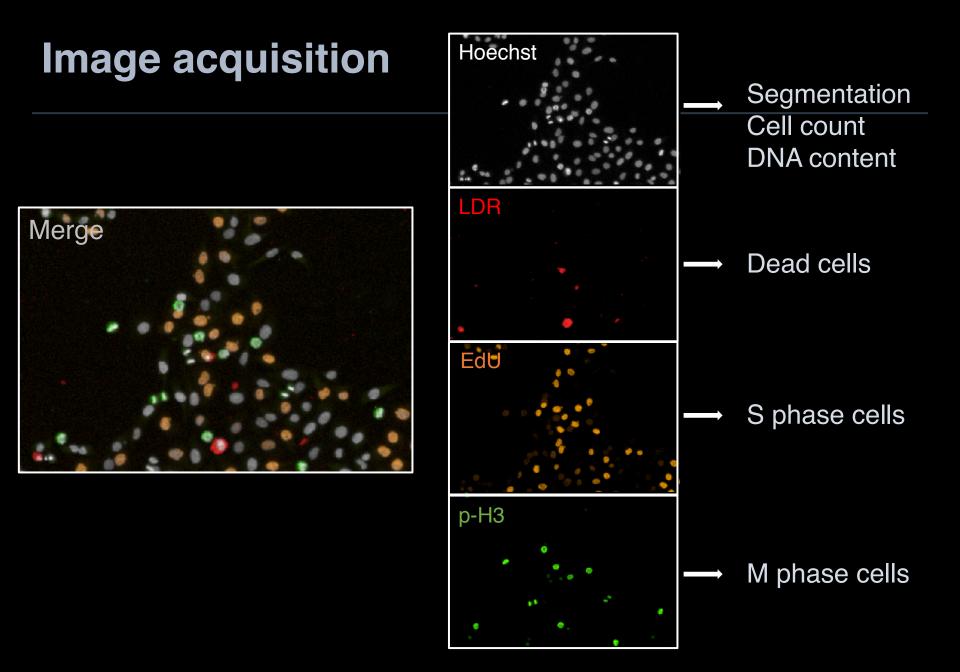


3. Classify live/dead cells

	Row	Column		Time point			Cell count 5091	Dead cell count	
C2		3	2MCF10A		Staurosporine	1		183	
C3		3	3MCF10A		Staurosporine	1	5929	213	
C4 C5		3	4MCF10A		Staurosporine	1		2021	
C6		3	5MCF10A 6MCF10A		DMS0 Staurosporine	0.316		29	
C7		3	7MCF10A		DMS0	0.516		321	
C7 C8		3	8MCF10A		Staurosporine	1		2473	
C8 D2		4	2MCF10A		DMS0	-		24/:	
D3		4	3MCF10A		Staurosporine	0.316		1490	
D4		à	4MCF10A		Staurosporine	0.1	7941	61	
05		4	5MCF10A		DMSO	0.1		360	
D6		à	6MCF10A	72	Staurosporine	0.316	6994	115	195
07		à	7MCF10A		DMS0	0	8872	160	195
08		4	8MCF10A	72	DMS0	0	9166	71	195
C2		3	2MCF10A		Staurosporine	1	5091	1833	195
C3		3	3MCF10A	72	Staurosporine	1	5929	213	195
C4		3	4MCF10A	72	Staurosporine	1	5663	2021	
CS		3	5MCF10A	72	DMS0	0		293	
C6		3	6MCF10A		Staurosporine	0.316		1143	
C7		3	7MCF10A		DMS0	0	7732	325	
C8		3	8MCF10A		Staurosporine	1	5463	2473	
D2		4	2MCF10A		OMS0	0		88	
D3		4	3MCF10A		Staurosporine	0.316		1490	
04		4	4MCF10A		Staurosporine	0.1	7941	636	
D5		4	5MCF10A		DMS0	0		360	
D6 D7		4	6MCF10A		Staurosporine	0.316	6994	115	
07		4	7MCF10A 8MCF10A		DMS0 DMS0	0		160	
U8 (2		3	2MCF10A			1	9166 5091	183	
C2 C3		3	3MCF10A		Staurosporine Staurosporine	1	5929	2137	
C4		3	4MCF10A		Staurosporine	1	5663	213	
C5		3	5MCF10A		DMSO		8000	297	
C6		3	6MCF10A		Staurosporine	0.316		1143	
c7		3	7MCF10A		DMS0	0.510		321	
C8		3	8MCF10A		Staurosporine	1	5463	2473	
D2		4	2MCF10A		OMS0	0		81	
D3		4	3MCF10A		Staurosporine	0.316	6163	1490	195
D4		4	4MCF10A	72	Staurosporine	0.1	7941	634	
D5		4	5MCF10A		DMSO	0		360	
D6		4	6MCF10A		Staurosporine	0.316	6994	1157	
D7		4	7MCF10A		DMSO	0		160	
08		4	8MCF10A		DMS0	0		73	
C2		3	2MCF10A		Staurosporine	1	5091	1833	
C3		3	3MCF10A		Staurosporine	1		2137	
C4 C5		3	4MCF10A		Staurosporine	1	5663	202:	
C5 C6		3	5MCF10A 6MCF10A		DMS0 Staurosporine	0.316		293	
C7		3	7MCF10A		DMS0	0.516		374	
C/ C8		3	8MCF10A		Staurosporine	1		2473	
Ca D2		4	2MCF10A		DMS0			24/3	
D2 D3		4	3MCF10A		Staurosporine	0.316		1496	
D4		à	4MCF10A		Staurosporine	0.1	7941	630	
05		à	5MCF10A		DMS0	0		360	
D6		à	6MCF10A		Staurosporine	0.316		1153	
07		à	7MCF10A		DMS0	0		160	
DS		à	8MCF10A	72	DMS0	0	9166	73	195
C2		3	2MCF10A		Staurosporine	1	5091	183	195
C3		3	3MCF10A	72	Staurosporine	1	5929	213	195
C4		3	4MCF10A	72	Staurosporine	1	5663	202	
C5		3	5MCF10A		DMS0	0		297	
C6		3	6MCF10A		Staurosporine	0.316		1143	
C7		3	7MCF10A		DMS0	0		325	
C8		3	8MCF10A		Staurosporine	1	5463	247	
02		4	2MCF10A		DMS0	0		81	
D3		4	3MCF10A		Staurosporine	0.316	6168	1494	
D4		4	4MCF10A		Staurosporine	0.1	7941	636	
D5		4	5MCF10A		DMSO	0		360	
D6		4	6MCF10A		Staurosporine	0.316		115	
07		4	7 MCF10A		DMSO	0		160	
28		4	8MCF10A	72	DMS0	0	9166	73	195


Can I just count live cells?


Strengths and limitations of the dye-drop assay


- Imaging based
 - Best suited for adherent cells that grow in monolayer culture
- Image analysis can be time consuming
- Can go back and visually inspect imaging data
- Potential for multiplexing, immunofluorescence
- Reagent sparing
- Distinction between cytotoxic and cytostatic effects
- Fate of live cells unknown

Can we learn more about the live cells? Deep dye-drop protocol

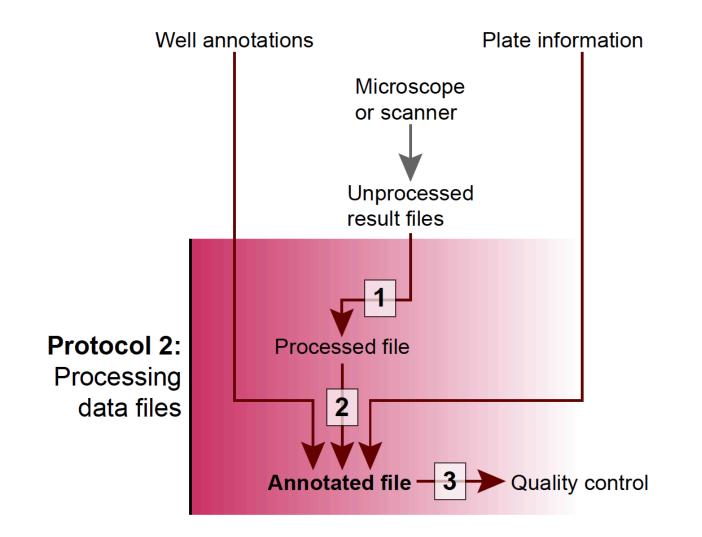
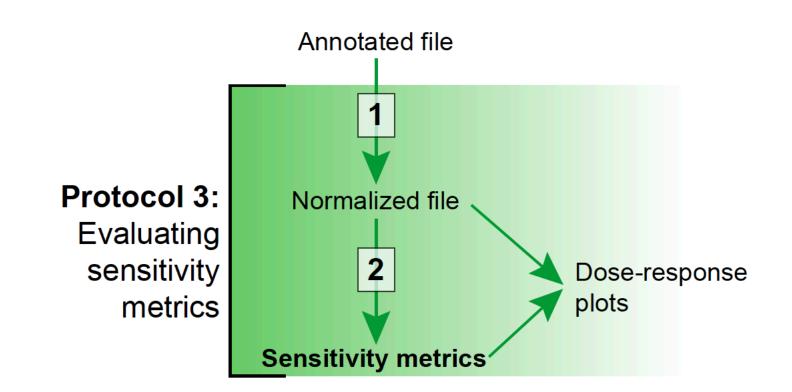
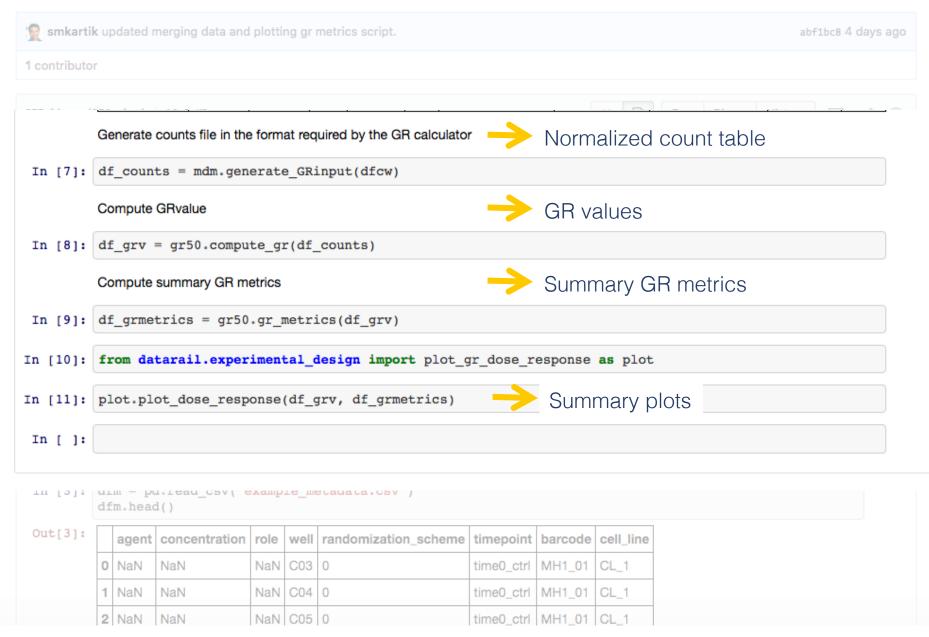


Image acquisition is more time consuming



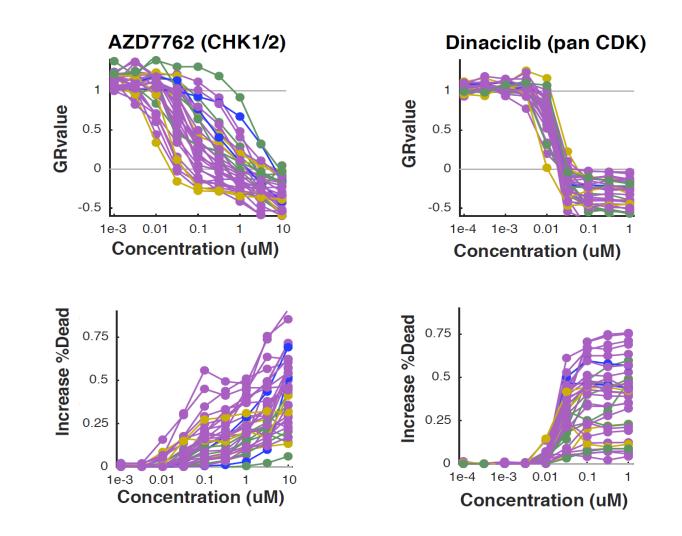
Data processing


Data analysis

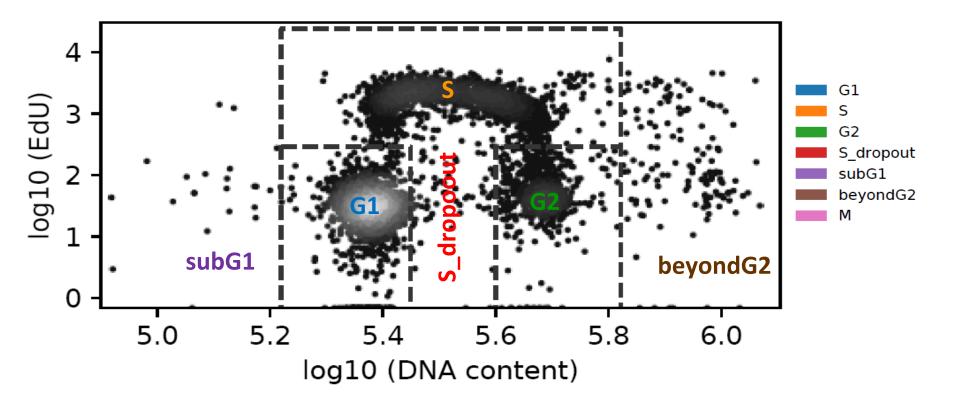
datarail / datarail / examples / Merge columbus output with plate and well level metadata files.ipynb

👷 smkarti	👷 smkartik updated merging data and plotting gr metrics script. abf1bc8 4 days ago													s ago			
1 contributo	1 contributor																
577 lines (577 lines (576 sloc) 16.5 KB 🛛 16.5 K														1		
In [1]:	: from datarail.experimental_design import merge_data_metadata as mdm import pandas as pd import gr50																
	Load columbus output, metadata and plate info files. Ensure that column heading are as shown in the below example input files																
In [2]:	dfo = pd.read_table('columbus_output.tsv') < Raw quantified image data																
Out[2]:		barcode	date		Row	Column	well	cell_co	unt_tot	al corpse	_count	cell	_count_	_dead	cell_count		
	0	MH1_01	2016-06-06 1	12:34:5	63	3	C03	511.0		32.0		12.0)		499.0		
	1	MH1_01	2016-06-06 1	12:34:5	63	4	C04	511.0		30.0		12.0)		499.0		
	2	MH1_01	2016-06-06 1	12:34:5	63	5	C05	526.0		32.0	32.0		12.0		514.0		
	3	MH1_01	2016-06-06 1	12:34:5	63	6	C06	494.0		38.0	38.0		15.0		479.0		
	4 MH1_01 2016-06-06 12:34:56 3 7 C07 507.0 29.0							29.0		13.0)		494.0				
In [3]:	<pre>dfm = pd.read_csv('example_metadata.csv') Metadata from design</pre>																
Out[3]:		agent co	oncentration	well ra	I randomization_scheme				nt barcod	de cell_line							
	0	NaN N	aN	NaN	C03 0				time0_ct	rl MH1_0	1 CL_1						
	1	NaN N	aN	NaN	C04 0				time0_ct	rl MH1_0	1 CL_1						
	2	NaN N	aN	NaN	C05 0				time0_ct	n MH1_0	1 CL_1						

datarail / datarail / examples / Merge columbus output with plate and well level metadata files.ipynb

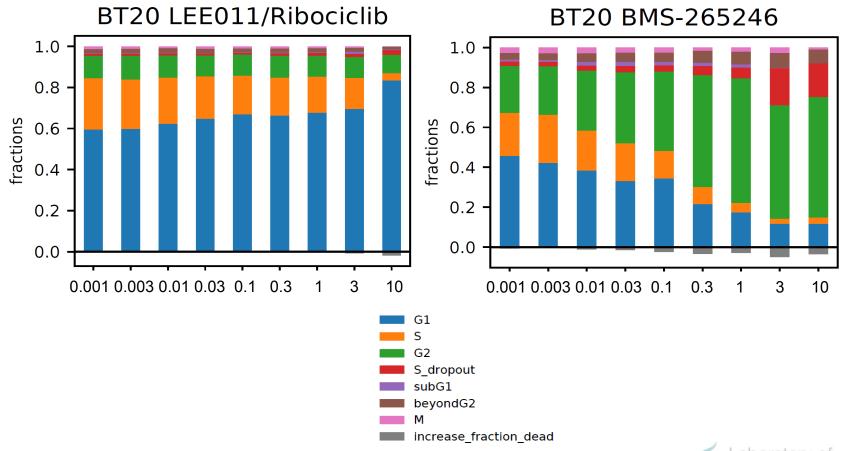

Analysis output files (Dye Drop)

							cell_line	treatment	concentratio	
							Hs578T	AZD1775		0.87627773
cell_line	treatment	concentratio co	ell count cel	l count ctrl	cell count ti	me0 time	Hs578T	AZD1775		0.71315548
Hs578T	AZD1775	0.001	3161	3837.666667	875.269		Hs578T 72 Hs578T	AZD1775		0.54911891
Hs578T	AZD1775	0.001	3398	3837.666667	875.269		1133701	AZD1775	0.03162278	
Hs578T	AZD1775	0.001	3493	3837.666667	875.269		72 Hs578T 72 Hs578T	AZD1775		0.28988683
Hs578T	AZD1775	0.00316228	2768	3837.666667	875.269		72 Hs5781 72 Hs578T	AZD1775	0.31622777	0.15239405
Hs578T	AZD1775	0.00316228	2742	3837.666667	875.269		72 Hs5781 72 Hs578T	AZD GR	values	0.06211543 0.01136504
Hs578T	AZD1775	0.000			075 200		72 Hs578T	AZD1775	10	-0.2126464
Hs578T	AZD1775	INOIT	nalized c	ount table	875.269		72 Hs578T	AZD1775		0.73724513
Hs578T	AZD1775	0.01	2108	3837.666667	875.269	4805	72 Hs578T	AZD2014		0.72666777
Hs578T	AZD1775	0.01	2268	3837.666667	875.269	4805	72 Hs578T	AZD2014		0.66564344
Hs578T	AZD1775	0.03162278	1595	3837.666667	875.269	4805	72 Hs578T	AZD2014		0.55891961
Hs578T	AZD1775	0.03162278	1742	3837.666667	875.269	4805	72 Hs578T	AZD2014	0.1	0.49154648
Hs578T	AZD1775	0.03162278	1727	3837.666667	875.269	4805	72 Hs578T	AZD2014	0.31622777	0.33929164
Hs578T	AZD1775	0.1	1527	3837.666667	875.269	4805	72 Hs578T	AZD2014	1	0.32070364
Hs578T	AZD1775	0.1	1339	3837.666667	875.269	4805	72 Hs578T	AZD2014	3.16227766	0.2845481
Hs578T	cell_line	treatment	GR50	GRmax	GR AOC	GEC50	GRinf	h_GR	r2_GR	pval_GR
Hs578T	Hs578T	AZD1775	0.01893073	-0.2126464	_	0.04681442	-0.2378845	0.42983997	0.97294605	3.26E-06
Hs578T	Hs578T	AZD2014	0.06225072		0.51356141			0.34897477	0.97356694	3.00E-06
Hs578T	Hs578T	AZD5363		0.34057138		1173		0.25043016		
Hs578T	Hs578T	AZD6738		0.15862042	(2D mc	etrics 152	-0.3241112	1.87755981	0.983338	
Hs578T	Hs578T	BMS-265246		0.06418563	_		-0.8002119	0.18893869	0.98567468	
Hs578T			1.70247689					0.3470251	0.96605461	
Hs578T Hs578T	Hs578T	BVD523		0.27840528			-0.257788			7.21E-06
Hs578T Hs578T	Hs578T	CFI-400945	0.00326927	0.13959787		0.00284445	0.1912934	3.46427746	0.97596165	2.15E-06
Hs578T	Hs578T	Flavopiridol	0.15093505	-0.1758999	0.24300872		-0.2662708	1.61622383	0.99714964	1.24E-09
Hs578T	Hs578T			0.53065211				0.28976583	0.9734299	3.06E-06
Hs578T	Hs578T	LEE011/Ribo	3.98380188	0.39670684	0.33089144	1000	-0.7108281	0.16006672	0.92942059	9.34E-05

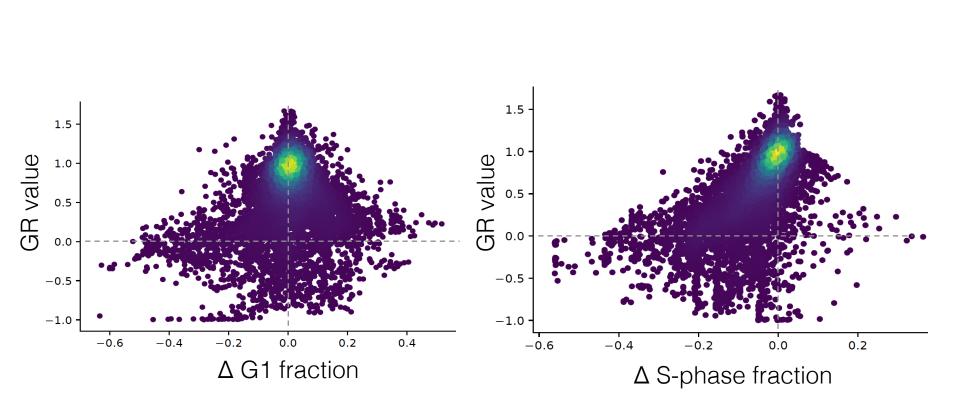

Analysis output files (Deep Dye Drop)

													cell_line		atment		GRvalue
	ell line	treatment	concentrati		* *	ell count	otrl		ount	time	time		Hs578T		01775		0.87627773
	s578T	treatment AZD1775	0.00	_	l c			_		_ume0 694805	ume	72	Hs578T		01775	0.00316228	
	s578T	AZD1775 AZD1775	0.00		398	3837.66				694805			Hs578T		01775		0.54911891
	s578T	AZD1775 AZD1775	0.00		193	3837.66				694805			Hs578T		01775		0.36042471
	s578T	AZD1775 AZD1775	0.0031622		,95 768	3837.66				694805		72 72	Hs578T		01775	0.1	0.28988683
	s578T	AZD1775 AZD1775	0.0031622		742	3837.66				694805			Hs578T			values (0.15239405
	s578T	AZD1775 AZD1775	0.000							694805			Hs578T				0.06211543
	s578T	AZD1775 AZD1775	0.003 No	ormaliz	ed	count	tabl	$\boldsymbol{\Theta}$		694805			Hs578T		01775	3.16227766	
	s578T	AZD1775	0.0	1 21	108	3837.66	56667			694805			Hs578T Hs578T		01775		-0.2126464
	s578T	AZD1775	0.0		268	3837.66				694805			Hs5781 Hs578T		02014 02014	0.00316228	0.73724513
	-570T	A7D1775	0.0216227			2027.60				CO1205					2014		0.66564344
reatr	ment	GR50	GRmax	GR_AOC		GEC50	G	GRinf		h_GR		r2_G	R	pval_GF	3	0.03162278	
ZD1	775	0.01893073	-0.2126464	0.69121	549	0.046814	442	-0.237	8845	0.429	83997	0.972	294605	3.26	E-06		0.49154648
ZD2	014	0.06225072	0.27113099	0.51356	141	0.0203	339 (0.1615	9799	0.348	97477	0.973	356694	3.00	E-06	0.31622777	0.33929164
ZD5	363	4.66264451	0.34057138	0.25823	6				-1	0.2504	43016	5 0.910	027375	0.0002	1638		0.32070364
ZD6	738	5.70071745	0.15862042	0.06024	4: C	GR met	trics	324	1112	1.877	55981	0.9	983338	5.97	'E-07	3.16227766	0.2845481
		0.03694372				5.811040	037	-0.800		0.188			567468		E-07		0.27113099
8VD5		1.70247689							7788				505461		E-06		0.91594716
		0.00326927				0.00284			2934	3.4642			596165		E-06	0.00316228	0.92218033
		0.15093505	-0.1758999			0.00204	+4J		2334	1.616	27740		714064		E-00	0.01	0.80929989
				cent	nea	agent	conce	entratio			S		G2	M	1	S_dropout	
		16.8060155				AZD1775				0.52988		0.16703		05082	0.0189		
EE01	11/Ribo	3.98380188	0.39670684			AZD1775	0.00	031622		0.43283		0.21322		12379	0.0374		
H	s578T	AZD1775	3.1622776	6 Hs578		AZD1775				0.3718		0.24484		27247	0.06069		
H	s578T	AZD1775	3.1622776	6 Hs578		AZD1775	0.03	316227		0.27190		0.36138	5 0.1	06999	0.0789		
H	s578T	AZD1775	1	Hs578 Hs578		AZD1775 AZD1775	0.2	162277		0.28482		Cello	cycle	fractio	nne I	52 0.059406 86 0.051305	
H	s578T	AZD1775	1	0 Hs578		AZD1775	0.3.	102277	1	0.2356		0.36822		56187	0.1802		
H	s578T	AZD1775	1	0 Hs578		AZD1775	3 1	162277		0.3550		0.30822 0.15313		65907	0.2011		
H	s578T	AZD2014	0.00	Hs578		AZD1775	5.1	102277		0.30383		0.00888		17044	0.3359		
H	s578T	AZD2014	0.00	L Hs578		AZD2014		0.0		0.5476		0.16038		17951	0.0183		

Results output: GR and cell death



Results output: Cell cycle distribution



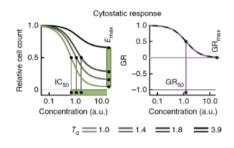
Results output: cell cycle summary

Laboratory of Systems Pharmacology

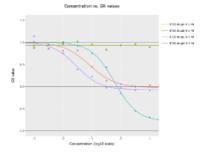
Variable effects on cell cycle distribution result in the same GR value

Online GR tool: www.grcalculator.org

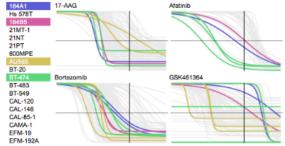
• • • / (🕽 GitHub - datarail/dat	tarail: Data ×	r and Broy ×			
\leftrightarrow \Rightarrow G [i www.grcalculato	or.org/grtutorial/Home.html				☆ ^{car} 2.0
	Home	About GR Metrics	Online GR Calculator	LINCS Dose-Response Datasets	Support	*** *** ***


Introduction

Drug-response studies play an important role in both preclinical and clinical research, but such studies are complicated by differences in cell growth rates across samples and conditions. To improve the value and reliability of such studies, new metrics for parameterizing drug response were developed and published in Nature Methods by Marc Hafner, Mario Niepel, and Peter Sorger of the Harvard Medical School (HMS) LINCS Center. These new metrics, such as GR50 and GRmax, are derived from normalized growth rate inhibition (GR) values which are based on the ratio of growth rates in the presence and absence of perturbagen. Largely independent of cell division rate and assay duration, GR metrics are more robust than IC50 and Emax for assessing cellular response to drugs, RNAi, and other perturbations in which control cells divide over the course of the assay.


Future Updates and Improvements

We plan to continue adding features and improvements to the GRbrowser, GRcalculator, and the GRmetrics R package in the coming months. We welcome comments and suggestions at gr.calculator@gmail.com. You can find a preliminary outline of our plans here. We will be adding a more detailed roadmap of additions/improvements in the near future.


Learn More about GR metrics

Upload and analyze your own data

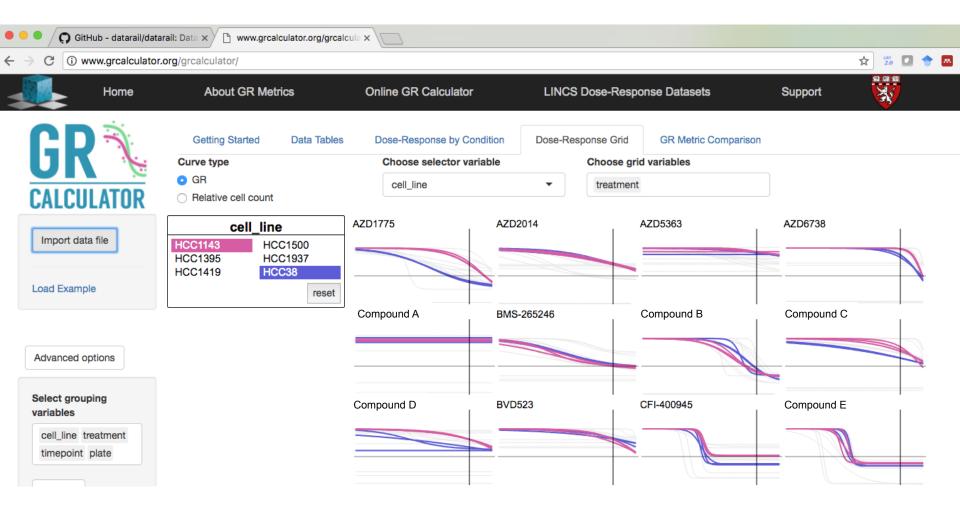
Browse datasets analyzed using GR metrics

For offline computation, analysis, and visualization, see the Bioconductor R package GRmetrics.

🖲 🔍 🔵 🎧 GitHub - datarail	/datarail: Data 🗙 🗋 www.grcalculator.org/	grcalcula x						
\leftarrow \rightarrow C (i) www.grcalcul	C www.grcalculator.org/grcalculator/							
Home	About GR Metrics	Online GR Calculator	LINCS Dose-Response Datasets	Support	92 CH 80			
GR	Getting Started							
CALCULATOR		Update: GR values may be calculated using cell division times (and assay duration) in place of initial cell counts. (Click "Import data file" and select "Cell division times" and a case to see more information.)						
Import data file								
Lad Example	2. "Case C" input format ren	lumns named "cell_line" and "treatment". named to "Case B". feature requests to GR.calculator@gmai						

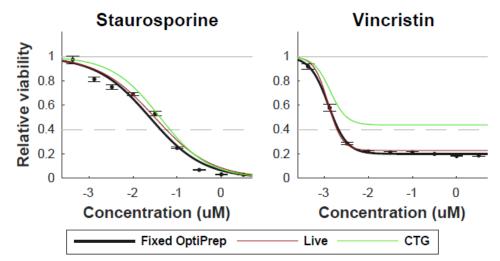
For offline computation, analysis, and visualization, see the Bioconductor R package *GRmetrics*. For a step-by-step example of using the GRcalculator, see *here*.

Formatting input files

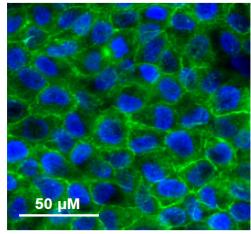

Input files may be either comma- or tab-separated text files (.csv or .tsv). For more information about the input format, click "Import data file" and make a select For an example input file, click "Load Example" and then "Download Data File" after the file has been loaded.

Instructions

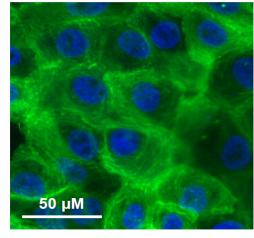
To calculate normalized growth rate inhibition (GR) values and corresponding GR metrics: GR_{50} , GEC_{50} , GR_{max} , GR_{infr} , GR_{AOC} , and h_{GR} based on cell counts in dose-response experiments using this online tool, users must provide a data file in which each row represents a separate treatment condition and the column the keys (variables) that define the treatment condition (e.g. cell line, drug or other perturbagen, perturbagen concentration, treatment time, replicate) and the recell counts (or surrogate such as CellTiter-Glo® or other readout). Analogous traditional metrics: IC_{50} , EC_{50} , E_{max} , E_{infr} , AUC, and h are also computed. Interact analysis and visualization tools are provided. Detailed instructions can be found below.

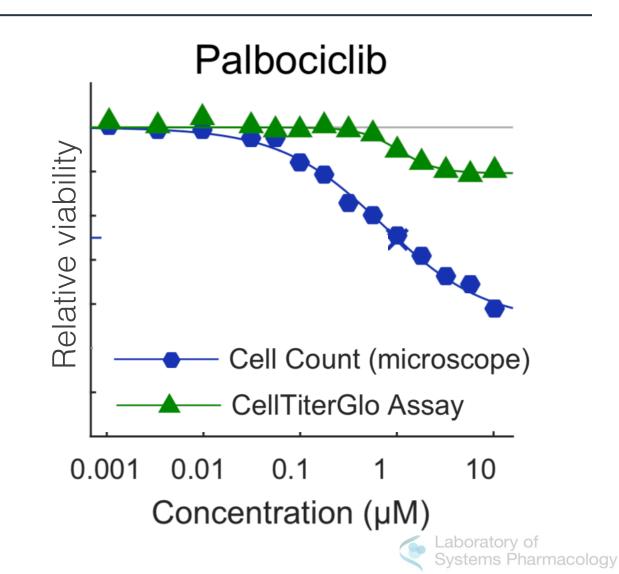

Step 1: Load the data file containing cell counts for treated and control cells.

C i www.grcalculator.	org/grcalculator/						☆ 觉 🔽	🔶 🔤
Home	About GF	R Metrics	Online GR Calculator	L	INCS Dose-Response D	atasets	Support	
CD 👌	Getting Starte	Data Tables						
	 Input Data 	GR Values	Fitted Parameters		Download Da	ata File		
ALCULATOR	Show 10 \$ et	ntries					Search:	
Import data file	cell_line 🍦	treatment 🍦	concentration \$	timepoint 🝦	cell_count ≑	cell_countctrl	cell_count_time0 \u00e9	plate
	HCC38	AZD6738	1	72	2031.0000000008	2629.08333333337	750.714285714287	BCA2_/
oad Example	HCC38	Rucaparib	0.0316227766017	72	2318.0000000007	2629.08333333337	750.714285714287	BCA2_
	HCC38	CFI-400945	0.001	72	2593.0000000004	2629.08333333337	750.714285714287	BCA2_/
	HCC38	SHP099	1	72	2115.0000000003	2629.08333333337	750.714285714287	BCA2_
dvanced options	HCC38	THZ-P1-2	3.16227766017	72	2447.0000000005	2629.08333333337	750.714285714287	BCA2_/
elect grouping	HCC38	AZD5363	0.00316227766017	72	2560.0000000003	2629.08333333337	750.714285714287	BCA2_/
	HCC38	GSK2334470	0.316227766017	72	2154.0000000001	2629.08333333337	750.714285714287	BCA2_A
cell_line treatment timepoint plate	HCC38	BSJ-03-124	0.0316227766017	72	1493	2629.08333333337	750.714285714287	BCA2_/
	HCC38	E17	0.001	72	2765.99999999988	2629.08333333337	750.714285714287	BCA2_
Analyze	HCC38	BSJ-03-124	0.00316227766017	72	1748.999999999993	2629.08333333337	750.714285714287	BCA2_A

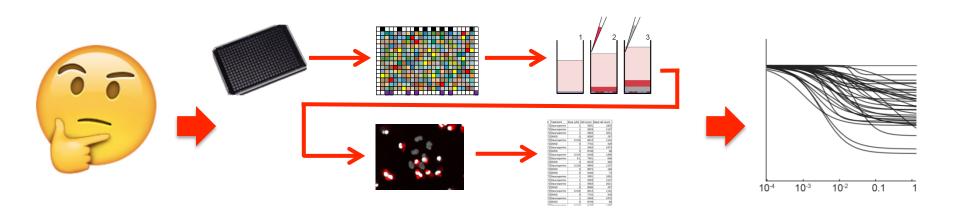

Other common dose response assays

- CellTiter-Glo etc.
 - Simple, no wash protocol
 - Luminescence read-out, simple analysis, rapid results
 - Treatment-induced changes in metabolic activity of cells can skew results
- Measurement of confluency
 - Inaccurate
 - Treatment-induced changes in morphology can skew results




Example of artefact with a CDK4/6 inhibitor

DMSO control


1µM Palbociclib

Conclusions

- Planning, and optimization promote reproducibility
- Automate as much as possible, know how it works
- Script the experimental design and analysis
- Use appropriate metrics for your experiment

Acknowledgements

Laboratory of Systems Pharmacology

Sorger Lab/LSP:

- Marc Hafner
- Mirra Chung
- Jeremy Muhlich
- Mario Niepel
- Luca Gerosa
- Nick Clarke
- Peter Sorger

Funding:

 NIH LINCS grant U54-HL127365

ICCB-L:

- Stuart Rudnicki
- Caroline Shamu
- Richard Siu
- Jen Smith

Contacts and references

- <u>caitlin_mills@hms.harvard.edu</u>
- kartik_subramanian@hms.harvard.edu
- grcalculator.org
- github.com/datarail/datarail
- Hafner*, Niepel* et al. Nat Methods, 2016, 13(6):521-7
- Hafner, et al., Nat Biotech, 2017, 35(6):500-2
- Hafner*, Niepel*, Subramanian* et al., Curr Protoc Chem Biol, 2018, 9(2): 96-116
- Niepel*, Hafner* et al., Curr Protoc Chem Biol, 2018, 9(2):55-74