ICSB Workshop: Drug Response Measurement and Analysis

Part 2: Best practices for experimental design, execution, and analysis

Caitlin Mills Kartik Subramanian

Drug-response experiments are becoming increasingly high-throughput

Design example: testing 2 drugs across multiple doses in 2 conditions

What does the pattern in the output response suggest?

Edge effects warrant randomization

Randomizing the position on the plate avoids biases and artefacts

Drug concentration

A375

A375

	_1 A B		C								
1	1 0.1		0.31	0.31		3					
2 0.31			1 (0.31					
3	3 0.1			1 1			1	Drug names			
4	0.31			3 0.1			0.1				
							Α		В	С	
				- 1	1 D_1		1	D_	5	D_4	
				- 1	2 D_4		D_	1	D_2		
Cell lines					3	3 D-5		D_		D_2	
				4 D_4			4	D_3		D_3	
				_		_	6				
	A		B		C						
	1	HeLa		HeLa	1		HeLa				
	2 MCF7		MCF7		MCF7						
	3 DU145		DU145		DU145		1				

A375

Experimental design long table

Well	Cell Line	Drug
A1	HeLa	D_1
B1	HeLa	D_5
C1	HeLa	D_4
A2	MCF7	D_4
B2	MCF8	D_1
C2	MCF9	D_2

Merging experimental design with measurements

Experimental design long table

Wall	Cell Line	Deux	Concentration	· \
Well	centine	Drug	concentration	4
A1	HeLa	D_1	0.1	-
B1	HeLa	D 5	0.31	E
C1	HeLa	D 4	3	C
A2	MCF7	D_4	0.31	4
B2	MCF7	D_1	1	E
C2	MCF7	D_2	3	C

Measurement file

Well	Cell count
A1	2500
B1	3168
C1	2110
A2	5673
B2	4389
C2	1290

Steps to achieve reliable experimental measurements

Manual layout of drugs on a plate

Randomized Assay Plates

Using high-dimensional data containers in the design, storage, and analysis of drug-response experiments

Additional notes: types of variables

- Model variables:
 - Treatment variables (drug, concentration, ...)
 - Condition variables (growth media, seeding density, ...)
- Confounder variables:
 - Plate model
 - Assay date
- Readout variables

Experimental Design

Details about specific example

Use Python and Jupyter notebooks to produce the experimental design

Template for specifiying the experimental design.

The compounds, number of doses and information about the role of each compound (treatment, negative control etc) is defined in the file "compound_list.tsv". The scripts below take this tsv file as input in order to design the layout on the plate.

The size of the plate has to be provided as number of rows and columns. The number of replicates and the plate barcode are also provided in the block of code below.

Design of the experiment and treatment layout (protocol 1)

There are 20 untreated wells on the inner plate. Consider alloting more wells to negative con trols

Explanatory text

User inputs

Warning messages

Use Jupyter notebooks to keep track of design steps and export drug layout

Basic experimental workflow

- Grow (happy) cells
- Seed cells at appropriate densities in multi-well plates
- Deliver drugs to multi-well plates
- Stain and fix cells
- Image cells
- Extract quantitative data from images

To consider before you start

- How many cell lines do I want to test?
 - Are they amenable to imaging?
 - Are they adherent? Do they grow in a monolayer?
 - How densely should they be seeded?
- How many drugs do I want to collect dose response data for?
 - Are they DMSO soluble?
 - What's an appropriate dose range?

Cell seeding

- Seed plates at an appropriate density
- Use automation if possible
- Barcode plates to keep track of them

Cell seeding density influences growth rate...

...which influences the dose response

Division rate differs across densities

Seeding density affects the number of divisions.

 \rightarrow IC₅₀ and E_{max} are correlated with density.

Drug delivery via pin transfer

- For simultaneous delivery of many drugs
- For large scale experiments (many cell lines, conditions)
- Facilitates reproducibility

Drug delivery via digital drug dispenser

- For accurate delivery of a few drugs
- Pilot experiments- to identify appropriate doses
- Follow-up experiments, 'hit' validation
- Drugs that cannot be prepared in DMSO

Drug delivery via manual pipetting

Drug delivery via manual pipetting

Other considerations

- Artefacts
 - Edge effects
 - Exclude outer wells
 - Use humidified secondary containers
 - Some cell lines are more sensitive than others
 - Depends on the duration of the experiment
 - Systematic bias from automation
- Randomization helps!

Dye-drop assay reagents

• Minimally-disruptive, reagent-sparing cell staining and fixation protocol

Dye-drop assay protocol

- Stain: Hoechst + LDR in 10% optiprep in PBS
- Fix: 4% formaldehyde in 20% optiprep in PBS

Plate washer

 Uniform and controlled aspiration and liquid dispensing

• Is repeat washing really that bad?

Repeat washing can result in cell loss...

No wash

PBS wash x 1

PBS wash x 2

...that can bias your results

No wash 1x wash

1

Image acquisition

- Operetta microscope with plate hotel, barcode reader & robot
 - Automated data collection for 40+ plates

Image acquisition

Imaging 6 fields of view @ 10x captures *almost* the entire well

Image analysis

1. Segment nuclei

2. Measure LDR signal

3. Classify live/dead cells

	Row	Column		Time point				Dead cell count	
C2		3	2MCF10A		Staurosporine	1	5091	183	
C3		3	3MCF10A		Staurosporine	1	5929	213	
C4		3	4MCF10A		Staurosporine	1	5663	2021	
C5		3	5MCF10A		DMS0	(293	
C6		3	6MCF10A		Steurosporine	0.316	6613	1143	
C7		3	7MCF10A		OMS0		7732	321	
C8		3	8MCF10A		Staurosporine	1		2473	
D2		4	2MCF10A		DMS0	0	8746	81	
D3		4	3MCF10A		Staurosporine	0.316	6168	1490	
D4		4	4MCF10A		Staurosporine	0.1	7941	630	
D5			5MCF10A		DMS0	0		360	
D6 D7		4	6MCF10A 7MCF10A		Staurosporine DMS0	0.316		1153	
D/ D8		4						160	
08		3	8MCF10A 2MCF10A		DMSO			183	
C2 C3		3	3MCF10A		Staurosporine	1	5929		
C3		3	4MCF10A	//	Staurosporine Staurosporine	1	5929	213	
C5		3	5MCF10A		DMS0		8000	202	
C6		3	6MCF10A		Staurosporine	0.310		1142	
C7		3	7MCF10A		DMS0	0.510		329	
C7		3	8MCF10A		Staurosporine	1	5463	2473	
02		4	2MCF10A		DMS0			24/3	
D3		4	3MCF10A		Staurosporine	0.316	6163		
03		4	4MCF10A		Staurosporine	0.510	7941	636	
D5		4	5MCF10A		DMSO	0.1	8529	360	
D6		4	6MCF10A		Staurosporine	0.316		1153	
07		4	7MCF10A		DMS0	0.510	8872	160	
D8		4	8MCF10A		DMSO			7	
C2		3	2MCF10A		Staurosporine			183	
C3		3	3MCE10A		Staurosporine			2133	
C4		3	4MCF10A		Staurosporine	1	5663	2021	
c5		3	5MCF10A		DMSO			297	
C6		3	6MCF10A	72	Staurosporine	0.316	6613	1142	195
c7		3	7MCF10A		DMSD		7732	325	195
C8		3	8MCF10A	72	Staurosporine	1	5463	2473	195
02		4	2MCF10A	72	DMSO		8746	51	195
D3		4	3MCF10A	72	Staurosporine	0.316	6163	1490	195
D4		4	4MCF10A		Staurosporine	0.1	7941	634	195
D5		4	5MCF10A	72	DMSD	0	8529	360	195
D6		4	6MCF10A	72	Staurosporine	0.316	6994	1157	195
D7		4	7 MCF10A		DMSO	0	8872	160	
08		4	8MCF10A		DMSO	(73	
C2		3	2 MCF10A		Staurosporine	1	5091	1833	
C3		3	3MCF10A		Staurosporine	1		2137	
C4		3	4MCF10A		Staurosporine	1	5663	202:	
C5		3	5MCF10A		DMS0	0		293	
C6		3	6MCF10A		Staurosporine	0.316	6613	1143	
C7		3	7MCF10A		DMS0	0		325	
C8		3	8MCF10A		Staurosporine	1	5463	2473	
D2		4	2MCF10A		DMSO	0	8746	88	
D3		4	3MCF10A		Staurosporine	0.316		1496	
D4		4	4MCF10A		Staurosporine	0.1	7941	630	
D5		4	5MCF10A		DMS0	(360	
DG		4	6MCF10A	72	Staurosporine	0.310		115	
07		4	7MCF10A		DMSO	0	8872	160	
08		4	8MCF10A		DMSO	0		73	
			2MCF10A		Staurosporine	1	5091	183	
C3		3	3MCF10A		Staurosporine	1	5929	213	
C4			4MCF10A		Staurosporine	1	5663		
		3	5MCF10A		DMSO			297	
C6		3	6MCF10A		Staurosporine	0.316		1142	
C7		3	7MCF10A		DMS0	0		325	
C8		3	8MCF10A		Staurosporine	1	5463	2473	
D2			2MCF10A		DMS0	0	8746	81	
D3		4	3MCF10A		Staurosporine	0.316		1490	
D4		4	4MCF10A		Staurosporine	0.1	7941	636	
D5		4	5MCF10A		DMS0	0	8529	360	
26		4	6MCF10A		Staurosporine	0.316		1153	
07		4	7 MCF10A		DMS0	0		160	
28		4	8MCF10A	72	DMS0		9166	73	19

Can I just count cells?

Strengths and limitations

- Imaging based
 - Best suited for adherent cells that grow in monolayer culture
- Image analysis can be time consuming
- Can go back and visually inspect imaging data
- Potential for multiplexing, immunofluorescence
- Fate of live cells unknown
- Reagent sparing
- Distinction between cytotoxic and cytostatic effects

Other assays

- CellTiter-Glo etc.
 - Simple, no wash protocol
 - Luminescence read-out, simple analysis, rapid results
 - Treatment-induced changes in metabolic activity of cells can skew results
- Measurement of confluency
 - Inaccurate
 - Treatment-induced changes in morphology can skew results

Take away messages

- Include a t=0 plate
- Optimize conditions
 - Seeding density per cell line
 - Dose range per drug
 - Duration of assay
- Automate as much as possible

Use Jupyter notebooks to import and annotate results from experiments

Check for unwanted biases using embedded functions

Quality control (protocol 2, step 3)

Analysis: data normalization and dose-response curve parametrization

Normalize the data to obtain the GR values

Calculate the GR values (protocol 3, step 1)

12:34:56

Fit a dose-response curve to obtain sensitivity metrics

Evaluate the GR metrics and plot the dose-response curves (protocol 3, step 2)

GRcalculator.org can replace the last part of the protocol

GRcalculator.org

Clark*, Hafner* et al., BMC Cancer, in review

Hafner*, Heiser* et al., Sci Data, in review

Advantages of an automated pipeline

1. Complex plate layouts can be designed

A single data container for data and metadata Extensions and modifications can be recorded

4. Integration with analysis tools

4. Jupyter notebooks enable ease of documentation end executions

Template for specifiying the experimental design.

